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Chairman’s Foreword

I am pleased to introduce the Hauraki Gulf Forum’s third State of the Environment Report.
We have made much progress over the past three years in building understanding of the require-

ments of the Hauraki Gulf Marine Park Act 2000, since the appointment of a full-time manager. We 
have published four guides on implementation of the Act through policies and plans (Hauraki Gulf 
Forum 2009), and the use of non-regulatory tools, under the Resource Management Act (Hauraki 
Gulf Forum 2010a); through the Fisheries Act (Hauraki Gulf Forum 2010b); and via the process of 
spatial planning (Hauraki Gulf Forum 2011).

The Act seeks integrated management aimed at sustaining the life-supporting capacity of the 
Gulf. It recognises that it is the interrelationships between water, islands and catchments that pro-
vide this capacity and is a matter of national significance.

Management agencies are required to protect and, where appropriate, enhance this capacity for 
the social, economic, recreational and cultural well-being of people and communities.

This is our most ambitious report in that it attempts to respond faithfully to the Act’s require-
ment for the Forum to produce every three years “a report on the state of the environment in the 
Hauraki Gulf, including information on progress towards integrated management and responses to 
[prioritised, strategic issues].”

As a basis for the report a core set of indicators drawn from biophysical monitoring programmes 
available from agencies was used. Because the available indicator sets are limited in their scope and 
longevity, the report also contextualises the state of the Hauraki Gulf against historical information 
and knowledge about how marine systems function ecologically.

This enables us to recognise the transformation which has occurred in the Gulf over two human 
lifespans and the incremental change which continues. The report concludes that most environmen-
tal indicators either show negative trends or remain at levels which are indicative of poor environ-
mental condition.

The report also assesses the responses of agencies to the important issues facing the Gulf, accord-
ing to their scale and potential impact, and the degree of integrated management. 

It concludes that there has been a collective failure to halt or reverse decline in the Gulf’s natu-
ral resources. This makes for challenging reading and calls into question some of the fundamental 
assumptions we use when undertaking business as usual.

I am pleased with the contribution by Professor John Montgomery and Dr Simon Thrush, which 
points out that the Hauraki Gulf is probably the best studied and known ecosystem in New Zealand, 
and such knowledge provides a platform for world-leading, ecosystem-based management. They 
suggest areas for research focus also, noting this must be rigorous and of a high quality if we are to 
move to effective action.

In adopting this assessment for publication the Forum asked for feed back on options to address 
the adverse environmental impacts it identifies. 

I expect that this will include an expanded set of indicators which enables us to track progress 
towards clear targets and carefully planned interventions aimed at protection and enhancement. 
This is needed to ensure a rich diversity and abundance of fish and marine life in the Hauraki Gulf in 
the future.

Mayor John Tregidga 
Chair Hauraki Gulf Forum
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This report measures progress toward achieving the vision of the Hauraki Gulf Forum, and consid-
ers whether the life-supporting capacity and resources of the Tïkapa Moana – Hauraki Gulf are 
being protected or, where necessary, enhanced in accordance with the objectives of the Hauraki 
Gulf Marine Park Act 2000. The Forum’s vision aims for a future where environmental quality is 
maintained, and the Hauraki Gulf is rich in diversity, with thriving fish and shellfish (kaimoana). It 
also seeks to ensure that resources are used wisely to grow a vibrant economy, and to protect our 
cultural heritage. 

Humans have lived in New Zealand for only a relatively short time, but their impacts on the natu-
ral environment have been profound. The degradation of the environment began with the arrival of 
Mäori, and was accelerated once European settlement occurred. Within the last two human lifes-
pans we have seen the extinction of a number of native terrestrial species, native forests and vast 
wetlands being replaced by pastoral land use, rapid sedimentation of the coastal zone, the destruc-
tion of ecologically important marine habitats (e.g. extensive subtidal mussel beds in the Firth of 
Thames and Tamaki Strait), large reductions in the populations of fished species, and continuing 
growth in urbanisation leading to the loss, modification and contamination of the coast. 

New Zealand has ground-breaking environmental regulations, which should have reduced envi-
ronmental degradation and habitat loss in the Gulf and allowed the recovery of depleted species, 
ecological communities and habitats over the past 20 to 30 years. 

This State of the Environment Report evaluates the current state of the environment and fisher-
ies within the Hauraki Gulf Marine Park against historical information and an assessment of what 
the state of the Gulf would likely have been prior to human presence impacts. This historical base-
line provides a useful reference point to evaluate the extent of change which has occurred in the 
Gulf, but the reference point cannot be interpreted as a target and the changes indicated cannot 
automatically be interpreted as failures in management. It is inevitable, and contemplated by the 
relevant legislation, that some change will occur as a result of people using and enjoying the natural 
resources of the Gulf, but it is important that these changes are kept within levels which maintain 
the overall healthy functioning of the Gulf as a natural system.

Encouraging signs are apparent for a few indicators, such as improving trends in total suspended 
solids concentrations along the Auckland coast, which appears to be a response to the former Auck-
land Regional Council’s (ARC) efforts at reducing sediment run-off through regulatory and non-regu-
latory initiatives. Nutrient concentrations have displayed declining trends also in most of Auckland’s 
rivers, but this may be due to a decrease in dairy farming rather than response-specific management 
initiatives, and opposite trends are apparent in the Waikato. Kahawai catch limits have also been set 
at levels that will allow the north-eastern stock (KAH1) to rebuild to about 52% of unfished levels  
by 2028. 

However, most of the indicators examined in this report suggest that the Gulf is experiencing ongo-
ing environmental degradation, and resources are continuing to be lost or suppressed at environ-
mentally low levels.1 For instance:

 – An empirical estimate of actual snapper biomass obtained in 1995 indicated that at that time 
snapper biomass had been reduced to 10.4% to 12.6% of the “virgin”, or unfished, biomass. 
Modelling predicted that limiting the total allowable catch to current levels would allow the 
stock to increase above the biomass required to produce the maximum sustainable yield within 
20 years, with a 100% probability. An empirical estimate of snapper biomass has not been 
made since 1995, so the model predictions have yet to be verified. However, a stock assessment 
is scheduled for 2012. The maximum sustainable yield is the default fisheries target, which is 
produced at c. 23% of virgin snapper biomass in the Hauraki Gulf-Bay of Plenty substock. This 
means that, under the current management criteria, 77% of the potential snapper biomass will 
remain missing from the Hauraki Gulf-Bay of Plenty ecosystem.

 – The “vulnerable biomass” of crayfish, in the CRA2 fishery area2, was estimated to be around 
20% of 1945 levels in 2002. Biomass was expected to remain at that level through to 2007. Best 
available information suggests the CRA 2 fishery is still above the statutory target level, and 
therefore, the total allowable catch has not been altered since 1997.

1. In this report, fisheries data is interpreted from an environmental management perspective, rather than from one of sustainability and utilisation. 
2. Vulnerable biomass is the biomass of individuals above the minimum legal size after size-related differences in catch rates, protection of berried 
females and seasonal vulnerability are taken into account. The CRA2 fishery area runs from just south of Whangarei Harbour entrance to East Cape.



 – The size characteristics of the fished and unfished snapper and crayfish populations differ 
substantially. Fished populations tend to be comprised of few, mainly young individuals that 
are below or near the legal size limit, while protected populations tend to have large numbers 
of older, large individuals above the legal size. This has implications for reproduction and 
population resilience during prolonged periods of poor recruitment.

 – Trawl survey data from the Hauraki Gulf indicates that rare and threatened fish species, fish 
diversity, and fish size and productivity displayed negative trends in the Firth of Thames 
between 1965 and 2000.

 – Significant, local reductions in shellfish populations have been recorded at three beaches, 
apparently due to harvesting, environmental stress, disease, or a combination of these 
conditions. A 36% reduction in cockle abundance occurred in Whangateau Harbour between 
2004 and 2010. Cockle abundance also declined at Umupuia between 1998 and 2007, but 
subsequently increased due to an influx of small cockles. These locations have a low proportion 
of large cockles too, with only 1% to 2% of the population being of harvestable size. Similar 
declines and changes in population size structure have also been reported at Cheltenham 
Beach. Cockle numbers at other beaches monitored by the Ministry of Fisheries (MFish) have 
been relatively stable.

 – Toxic metal and organic contaminants are causing localised effects in Auckland estuaries.  
A number of metal contaminants exceed sediment guideline values in the southern Firth of 
Thames as well. Threshold effects level (TEL) guideline values are exceeded at 21 of the 50 sites 
that are regularly monitored by Auckland Council. Probable effects level (PEL) guidelines are 
only exceeded at the lower tidal banks of Meola Creek and Motions Creek in the Waitematä 
Harbour. Management actions are not expected to remediate areas affected by urban and 
legacy contamination, but may slow accumulation and prevent the degradation of areas with 
clean sediments.

 – Riverine inputs of nitrogen to the Firth of Thames now exceed loads from oceanic sources. 
Waihou and Piako rivers dominate nutrient loads to the Gulf, contributing around 90% of 
nutrients entering from the Waikato Region and exceeding river and wastewater loads from the 
Auckland Region. The mass load of nitrogen from Hauraki rivers is estimated to have increased 
by about 1% per year between 2000 and 2009, while phosphorus decreased by about 5% per 
year during the same period. The long-term implications of increasing nitrogen loads are poorly 
understood.

 – Fourteen or more of the 42 beaches monitored in the Auckland Region between January 2006 
and April 2009 exceeded the “action”-level guideline for marine bathing each year. Exceedance 
of this guideline indicates that swimming, or other forms of contact recreation, may pose a 
health risk. In the Waikato Region, eight of the 16 sites monitored exceeded the action threshold 
at least once in January-February 2006, while two sites exceeded the action threshold in 
January-February 2008.

 – A number of studies carried out over the past decade or so have confirmed that sediment is a 
serious environmental contaminant that degrades coastal habitats and is toxic to most marine 
organisms.

 – Modern sediment accumulation rates are typically greater than those for natural sedimentation 
rates. However, as mentioned earlier, there are signs that management initiatives in the 
Auckland Region are reducing suspended solids concentrations on the Auckland coast.

 – Sediment accumulation has contributed to the expansion of mangroves in many, if not all, 
estuaries in the Gulf.

 – Changes in the composition of benthic communities that are consistent with increased 
sediment-mud content have been detected at sites in Puhoi, Wairewa, Orewa, Turanga 
and Waikopua estuaries, and in Mahurangi Harbour. The proportions of mud and fine sand 
increased significantly between 2001 and 2006 at monitoring sites in the Firth of Thames, but 
these changes were not matched by negative trends in species sensitive to fine sediments.

 – A total of 139 non-indigenous marine species have been recorded in the Hauraki Gulf. Four 
arrivals in the past 10 years are notable for their potential to cause significant ecological and/
or economic effects: the Mediterranean fanworm (Sabella spallanzanii); the clubbed sea squirt 
(Styela clava), the Asian kelp (Undaria pinnatifida); and the Japanese mud crab (Charybdis 
japonica). Three of these are formally classified as unwanted species.

 – Large amounts of litter continue to enter the coastal environment. Plastics are particularly 
problematic owing to their environmental persistence and effects on wildlife and aesthetics.

State of the Environment Report 2011 11
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 – Between 1960 and 2005 seven of the 15 most common waders displayed declining trends in 
the Firth of Thames’ Ramsar site. By comparison, four wader species increased in number, and 
four species maintained relatively stable populations. Mangrove expansion and other habitat 
changes were implicated in the decline of at least four species.

 – Between 1989 and 2008 two endangered Bryde’s whales were killed in the Hauraki Gulf from 
entanglement in mussel farm spat lines, and 11 Bryde’s whales were killed by lethal injuries that 
were consistent with vessel strike.

 – Forty-seven per cent of the Gulf’s mainland bays and beaches (named on topographical maps) 
are fully urbanised, intensively developed or moderately developed, while the land surrounding 
38% of bays and beaches was either undeveloped or contained only scattered buildings. The 
Waikato Region has more undeveloped bays and beaches than the Auckland Region, with 36% 
undeveloped in Waikato cf. 5% in Auckland.

 – Large-scale development of new or “greenfield” coastal land has occurred around the margins 
of the Auckland urban isthmus in the past 10 to 15 years. Smaller-scale developments have also 
taken place around the outlying towns of Warkworth, Snells Beach, Omaha, Matakana and 
Beachlands. 

 – There was a steady increase in the number of dwellings in east-coast settlements on 
Coromandel Peninsula between the 1991 and 2006 censuses, with holiday homes responsible 
for a large proportion of development. In 2006, 48% of dwellings in the Thames-Coromandel 
District were unoccupied, with most of these consisting of holiday homes and/or baches 
(however, vacant properties for sale, properties completed but not yet occupied and other 
properties such as “abandoned” dwellings are also included in this figure). 

 – A third of the commercial holiday parks on Coromandel Peninsula closed between 1996  
and 2006.

Not enough information was available to adequately characterise the impact that some activities 
are having, but local and international studies suggest that the magnitude and scale of their effects 
are likely to be among the most significant in the Gulf. For instance:

 – Bottom trawling is one of the most commonly used methods of catching fish in the Hauraki 
Gulf, accounting for around 30 to 40% of the total commercial catch and occurring in most 
areas north of a line running from Kawau Island to Colville Bay. Virtually nothing is known 
about seabed ecology in trawled areas, but they are likely to contain (or have once contained) 
ecologically important habitats and features that are sensitive to bottom disturbance. Local 
and international research suggests that trawling causes substantial reductions in species and 
habitat diversity. 

 – Commercial scallop fishing has occurred in an area of 350 to 450 km2 for most of its history, but 
dropped to 200 km2 in 2001, and 100 km2 in 2005, with effort shifting from the central Gulf and 
Aotea (Great Barrier Island) to Mercury Bay and Bay of Plenty. The areas targeted by commercial 
and recreational fishers contain a variety of benthic habitats. Habitat-forming or ecologically 
important species are commonly collected in scallop dredges, including horse mussels, dog 
cockles, starfish, sponges, kelp and turfing algae. Very little information is available on the 
current or historical ecology of scallop fishing areas, or the impacts of dredging on them. 

 – Of the top 15 fish species caught commercially:
 – the current status of nine species is not known;
 – overfishing of two species is about as likely as not to be occurring, but can't be confirmed 

either way (tarakihi and trevally);
 – three species (pilchard, baracoutta and grey mullet) are not considered to be at risk  

of collapse, but not enough is known about the stocks to assess whether they are at or  
above target levels or depleted;

 – two species (snapper and kahawai) are considered to be at or above target levels, and are  
not depleted or at risk of collapse. 

In addition, harmful algae and pathogens have had a major ecological and economic impact on 
the Hauraki Gulf over the past 30 years. The causes, historical incidence and implications of mass 
mortalities are poorly understood, but their impact has been significant. Mass mortalities have 
included: the loss of around 80% of juvenile oysters on oyster farms; the loss of 60 to 80% of cock-
les in Whangateau Harbour; the largest recorded fish kill in the world (pilchards); the die-off of the 
main canopy-forming kelp on northern reefs (Ecklonia radiata); a major loss of scallops; the death 
of tens of thousands of fish in the central-inner Gulf; and the loss of around 8,500 paua at a farm in 
Kennedy Bay. 
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While many activities are causing unfavourable environmental effects, island and marine conserva-
tion efforts are clearly producing positive outcomes: 

 – Many islands in the outer Gulf have a high proportion of native forest cover. Hauturu (Little 
Barrier Island) is almost fully forested, while 86% or more of Aotea (Great Barrier Island) and 
Kawau Island are covered by indigenous forest, broadleaved indigenous hardwoods, or manuka 
and kanuka. Most of the islands around Coromandel Peninsula are also covered in native 
vegetation, the notable exceptions being Great Mercury and Slipper islands. Rangitoto Island 
is covered with native forest, while volunteers have planted around 206,000 trees on Motuora 
and 280,000 trees on Tiritiri Matangi. Motutapu and Motuihe have been partially revegetated, 
and the Rotoroa Island Trust is replanting on Rotoroa Island. 

 – Forty-three per cent of islands in the Gulf that are larger than 10 ha are currently free of 
mammalian herbivorous and predatory pests. Pests have been eradicated also from Rangitoto 
and Motutapu islands, but their pest-free status is yet to be confirmed. The elimination of 
mammalian pests has allowed one nationally critical (takahe) and four nationally endangered 
(hihi, kokako, North Island weka and brown teal) bird species to be translocated to, or among, 
islands in the Gulf. In addition, one nationally critical (Mercury Island tusked weta) and two 
nationally endangered (Mahoenui giant weta and wetapunga) insects, and one nationally 
vulnerable (Whitaker’s skink) reptile have been translocated. A number of other less-threatened 
species have also been translocated among islands.

 – Finally, at least two of the Gulf’s marine reserves and the only marine park (i.e. Tawharanui, 
which is awaiting formal gazzetting as a Marine Reserve) have allowed the local recovery of 
heavily fished species such as snapper and crayfish, which has led to corresponding changes in 
reef ecology and productivity.

This report highlights the incredible transformation the Gulf has undergone over two human lifes-
pans. That transformation is continuing in the sea and around the coast, with most environmental 
indicators either showing negative trends or remaining at levels which are indicative of poor environ-
mental condition. It is inevitable that further loss of the Gulf’s natural assets will occur unless bold, 
sustained and innovative steps are taken to better-manage the utilisation of its resources and halt 
progressive environmental degradation. The regulatory tools appear to be available to do this, but to 
date they have either not been implemented or the manner of implementation has not been effec-
tive. The challenge facing today’s managers and kaitiaki (guardians)who seek to achieve the Hauraki 
Gulf Forum’s vision for the Gulf is to find solutions to the progressive decline in the Gulf’s resources 
and ecosystem, and to protect opportunities for future generations.





2.  
 
Background



16 Tikapa Moana – Hauraki Gulf

2.1 The Park 

The Hauraki Gulf Marine Park was established under the Hauraki Gulf Marine Park Act (2000). It 
currently includes the foreshore, seabed (excluding defence areas) and seawater on the east coast 
of the Auckland and Waikato regions (i.e. the Gulf), as well as Hauturu (Little Barrier Island), the 
Mokohinau Islands, more than half of Aotea (Great Barrier Island), Cuvier Island, Rangitoto Island, 
Motutapu Island, Mount Moehau, Mansion House on Kawau Island, North Head Historic Reserve, 
other small islands administered by the Department of Conservation (DOC), four marine reserves 
and the internationally recognised Ramsar wetland at the Firth of Thames. It also includes a number 
of reserves owned by, or previously owned by, Forest and Bird, Waitakere City Council and Rob Fen-
wick. Although the Hauraki Gulf Marine Park does not include the entire catchment of the Gulf (Fig-
ure 1), the Act does recognise the interrelationship between the Gulf, its islands and catchments and 
therefore contains objectives related to catchment management. Tängata whenua (original inhab-
itants) have no single name for the Gulf, but Tïkapa Moana and Te Moananui a Toi are often used.

The marine environment in the Hauraki Gulf Marine Park extends from the deep ocean to bays, 
inlets and harbours off the coastline and the shallow sea and broad intertidal flats of the Firth of 
Thames. The complexity and nature of the physical environment is reflected in a diverse and highly 
productive marine ecosystem. The islands of the Gulf are also a critical refuge for rare plants and 
animals. Some of the species on the islands, which were once common, no longer naturally occur 
anywhere else in the world. 

The Gulf has a rich history of human settlement and use. It is one of the earliest places of human 
settlement in New Zealand, and has sustained tängata whenua for many generations. The history of 
the Gulf can be traced through places like the pä (fort), kainga (village) and garden sites of antiquity 
on most islands, while European settlement and development is recorded in driving dams, copper 
and gold mines, whaling stations, timber mills, industrial sites, and grand and ordinary homes. 

The Gulf is economically important and most of its catchments are intensively developed and 
settled. Its shores contain New Zealand’s largest metropolitan area and extensive tracts of produc-
tive farmland. Its coastal waters are of great importance to commerce in this country: containing 
the Port of Auckland, together with many smaller ports and marinas. It is lived in and worked in, and 
used for marine commerce, commercial fishing and transport. 

People also use the Gulf for recreation and the sustenance of human health, well-being and spirit. 
The natural amenity of the Gulf provides a sense of belonging for many New Zealanders and for 
them it is an essential touchstone with nature, the natural world and the marine environment.

The Gulf, its islands and catchments have complex interrelationships that need to be understood 
and managed, to ensure that their values are to be maintained, protected or enhanced in perpe-
tuity. The Gulf crosses territorial and departmental jurisdictions, land and water boundaries and 
cultures. It is therefore essential that the objectives and approaches of management organisations 
are integrated in a way which provides for conservation, sustainable utilisation, development and 
enhancement.

The purpose of establishing the Hauraki Gulf Marine Park was therefore to:
a. recognise and protect in perpetuity the international and national significance of the land and 

the natural and historical resources within the Park;
b. protect in perpetuity and for the benefit, use and enjoyment of the people and communities 

of the Gulf and New Zealand, the natural and historical resources of the Park including scenery, 
ecological systems or natural features that are so beautiful, unique or scientifically important  
to be of national significance, for their intrinsic worth;

c. recognise and have particular regard to the historical, traditional, cultural and spiritual 
relationship of tängata whenua with the Hauraki Gulf, its islands and coastal areas, and the 
natural and historical resources of the Park; and

d. sustain the life-supporting capacity of the soil, air, water and ecosystems of the Gulf in the Park.

16 Tikapa Moana – Hauraki Gulf



2.2  The Hauraki Gulf Forum and the State 
of the Environment Report

The Hauraki Gulf Forum (subsequently referred to as the Forum) is made up of representatives from 
local and regional councils, central government departments (Mäori Affairs, MFish and DOC) and 
tängata whenua. It was established under the Act to facilitate communication, co-operation and 
co-ordination among the member organisations. 

Functions that the Forum must perform are: to obtain, share and monitor information on the 
state of the natural and physical resources of the Gulf; identify strategic issues; and to prepare and 
publish a report on the state of the environment in the Hauraki Gulf every three years. Previous State 
of the Environment reports produced in 2004 and 2008 (Hauraki Gulf Forum 2004, 2008a) identified 
a wide range of activities that affect the natural and physical resources of the Gulf. The impacts of 
these activities vary widely in their scale and magnitude, with some causing minor, localised effects 
and others having major consequences for the whole Gulf. 

In this report, there is a deliberate focus on the most pressing environmental issues, and, where pos-
sible, the current state of the environment is put into context by considering historical information. 
The issues considered here are linked to the high-level strategic issues previously identified by the 
Forum (Table 1, Hauraki Gulf Forum 2008b), but there is a deliberate focus on indicators related to 
the natural environment. These indicators are contained within the headings: 
1. fishing;
2. sediment;
3. toxic chemicals;
4. nutrients;
5. microbial pollution of bathing beaches;
6. introduced marine species;
7. harmful algae, pathogens and mass mortalities;
8. litter;
9. maintenance and recovery of biodiversity; and
10. coastal development.

At least one of these issues appears to be relatively new, yet its historical occurrence and causes are 
poorly understood. Toxic algae and pathogens have recently demonstrated their capacity to cause 
rapid, large-scale and serious impacts on the Gulf and well beyond. In recent years, mass mortalities 
caused by toxic algae, pathogens and other unknown causes have been reported for a growing list 
of fish, plants and invertebrates. Biotoxins have also caused poisonings in the human population. We 
do not know what influence human activities have on the occurrence or spread of harmful algae and 
pathogens, but it is possible that their impact could increase if human activities reduce the resilience 
of the marine ecosystem. Available information on this issue is therefore included in this report.

In order to put information on the state of the environment into context it is crucial for an appro-
priate baseline to be defined. Furthermore, to avoid the potential of a “sliding baseline” this reference 
point should be founded on a natural benchmark. Failure to use a natural reference point will almost 
invariably result in a sequential worsening of environmental quality over successive generations. 
It would also lead to a failure to detect the creeping disappearance of environmental values and 
resources, and the use of inappropriate reference points for evaluating impacts (Pauly 1995). 

Routine and robust state-of-the-environment monitoring data from the Hauraki Gulf has been 
collected for only a relatively short period (starting with water quality monitoring in the Auckland 
Region in the late 1980s). However, scientific studies and historical records are available, which allow 
the major changes that have occurred in the Gulf to be described and in many cases quantified. 
Historical background information is therefore provided from a range of published and unpublished 
scientific papers, reports and theses. Where possible, this is used to put the current state of the envi-
ronment into context and to provide a benchmark for comparison. This has been achieved by includ-
ing a section with information on the natural setting for the Gulf and a general summary of human 
impacts. When available, long-term data and model projections are also presented in the sections 
on environmental indicators.

State of the Environment Report 2011 17
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However, the knowledge base is still incomplete and fundamental gaps remain in our under-
standing of what the Gulf contains, how the Gulf functions and the impacts that humans have had. 
The lack of information was recently highlighted in the discovery that Omaha Bay contained up to 
4 million worm-eels (Scolecenchelys australis) that are rarely encountered by humans. If such abun-
dances were typical, it would make this unusual and infrequently encountered species one of the 
more abundant fish in coastal New Zealand (Taylor and Morrison 2008). The fact that this type of 
discovery is still being made in such an accessible and heavily utilised area clearly illustrates that our 
current level of understanding is inadequate. The report therefore includes a section that considers 
key knowledge gaps and makes recommendations on the research required to fill them.

Table 1: Links between strategic issues identified by the Hauraki Gulf Forum  

(Hauraki Gulf Forum 2008b) and environmental indicators considered in this report.

Strategic Issue Related Indicators

Maintaining and enhancing Tikapa 
Moana – Hauraki Gulf as a
pataka (storehouse of food 
and knowledge)

Fisheries, sediment, toxic chemicals, nutrients, microbial pollution, 
introduced marine species, harmful algae, pathogens and mass 
mortalities, and maintenance and recovery of biodiversity.

Water quality Sediment, toxic chemicals, nutrients, microbial pollution, and
possibly harmful algae, pathogens and mass mortalities.

Biological diversity Fisheries, introduced marine species, harmful algae, pathogens
and mass mortalities, and maintenance and recovery of
biodiversity.

Natural character and landscape Coastal development.

Climate change No direct indicators, but climate change potentially influences the
maintenance and recovery of biodiversity, introduced marine
species, and possibly, harmful algae, pathogens and mass
mortalities.

Cultural heritage Coastal development.

Integrated management All indicators.

Raising awareness, understanding 
and recognition of the national
significance of Tikapa 
Moana – Hauraki Gulf

All indicators.

Access to Tikapa Moana – Hauraki Gulf Coastal development.

Coastal hazards Coastal development.

Progress on recognising the historical, traditional, cultural and spiritual relationship of tängata 
whenua with the Hauraki Gulf is also considered by reviewing how tängata whenua values and 
practices are recognised in the Hauraki Gulf Marine Park Act, the roles of agencies and iwi planning 
documents, the effects of treaty settlements and options for agencies to respond to tängata when-
ua’s interests. Tängata whenua case studies are also presented for Tämaki River and Whangamatä. 

Finally, the State of the Environment Report is required to include information on progress being 
made towards integrated management and responses to strategic issues identified by the Forum. 
This is achieved by reviewing the policy framework and recognising management gaps and opportu-
nities. The focus of this assessment is on examining the level of integration occurring at a strategic 
level, and in particular at co-ordinating programmes that will deliver the vision for Tikapa Moana – 
Hauraki Gulf.
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Vision for Tikapa Moana – Hauraki Gulf

Tikapa Moana – Hauraki Gulf is celebrated and treasured because 

–   Kaitiaki sustain the mauri of the Gulf and its taonga. Communities care for the land 
and sea. Together they protect our natural and cultural heritage.

– Tikapa Moana is thriving with fish and shellfish, kaimoana.

–  Rahui Tapu is being systematically instituted by communities conscious of maintaining 
the integrity of Tikapa Moana as a food cupboard, pataka kai.

– Individuals, groups and communities are conscious of, and undertake their responsibilities to 
maintain optimum quality standards of the waters, air, and land in their catchments.

– There is rich diversity of life in the coastal waters, estuaries, islands, streams, 
wetlands and forests, linking the land to the sea.

–  People are familiar with the rich history, cultural and physical heritage and spirituality of Tikapa Moana –  
Hauraki Gulf, gain a sense of place, connection and identity from these and behave in ways that respect  
and protect them.

– People enjoy a variety of experiences at different places that are easy to get to.

– People live, work and play in the catchment and waters of Tikapa Moana – Hauraki 
Gulf and use its resources wisely to grow a vibrant economy.

–  The community is aware of and respects the values of Tikapa Moana – Hauraki 
Gulf and is inspired to enhance and protect this great place.

Figure 1: Extent of the Hauraki Gulf Marine Park and its associated catchment.
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The Gulf
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3.1 Natural setting

3.1.1 Geology

The origins of the oldest, greywacke, rocks in the Hauraki Gulf can be traced back to sand and mud 
deposits, which accumulated off the coast of the ancient southern continent, Gondwanaland, 
around 140 to 250 million years ago. Since those rocks were laid down, the geology of the Gulf and 
its catchments have been slowly shaped over millions of years through uplifting, marine subsidence, 
erosion, sediment transport and deposition, sea-level change and volcanism. Time and geological 
processes have therefore formed the natural landscape of coastal and underwater features that 
make up the Gulf.

Coromandel Peninsula and Aotea (Great Barrier Island) largely consist of rocks derived from 
magma, volcanic flows and volcanic deposits, which cover a basement of ancient greywacke. These 
rocks have been locally altered in many places by pockets of hydrothermal activity. Small exposures 
of greywacke still occur on the northern half of Coromandel Peninsula and Aotea (Great Barrier 
Island), with the largest outcrops found at their tips. The islands to the east of Coromandel Penin-
sula, Little Barrier Island, Mokohinau Islands, Rangitoto Island and Browns Island also have volcanic 
origins, but rock types differ among the islands. Rangitoto Island is a very young “shield” volcano 
whose iconic cone shape was created around 600 years ago through the build-up of overlapping 
lava flows that poured out in all directions and solidified into hard, fine-grained basalt rock.3 Its steep 
sided scoria cones were produced by fountains of frothy lava (Cameron et al. 2008). Hautarui (Little 
Barrier Island) is the emergent part of a large “stratovolcano” that has been built up by many layers 
(strata) of hardened lava, tephra, pumice and ash (Edbrooke 2001). Stratovolcanoes tend to have 
steeper profiles than shield volcanoes and are characterised by periodic, explosive eruptions. Islands 
to the east of Coromandel Peninsula were mainly created by a mix of andesite, rhyolyte and basalt 
flows and deposits. Cuvier Island has a slightly different geology, being composed of magma-based 
rocks that were formed in the earth’s crust and later exposed.

In stark contrast, the western catchment of the Gulf from Maraetai Beach north is largely com-
prised of soft, erodible Waitematä sand and mudstones that were formed in a deep marine basin 
when the area subsided beneath the sea around 20 to 25 million years ago (Grant-Mackie 1983, 
Edbrooke 2001). These are interrupted by the basalt lava flows and volcano deposits of the Auck-
land volcanic field, and by small pockets of volcanic rock around Leigh. Stony Batter on Waiheke 
Island is also a small, remnant volcano. The Hunua Ranges, Waiheke Island and Kawau Island are 
predominantly composed of greywacke which was once covered by a thick layer of Waitematä sand 
and mudstones. Uplifting and erosion have weathered away softer rock to re-expose the hard, 
underlying basement. Smaller outcrops of greywacke have been re-exposed is a similar fashion on 
Tawharanui Peninsula and around Leigh too. 

The Hauraki Plains and Firth of Thames were formed by an active rift between the Firth of Thames 
Fault along the eastern side of the Hunua/Hapuakohe Ranges and the Hauraki Fault that runs along 
the western side of the Coromandel/Kaimai Ranges (Edbrooke 2001). This area was historically part 
of an extensive alluvial plain in the lower reaches of the Waikato River, which diverted its course 
from the east to the west coast around 20,000 years ago. It is currently drained by two large river 
systems: the Waihou and Piako rivers. The Hauraki Plains, Firth of Thames and broader Hauraki Gulf 
have a geologically recent history of marine inundation and emergence due to sea-level fluctuations 
and infilling by river sediments. During the peak of the last glacial period, around 18,000 years ago, 
the sea level is estimated to have been over 100 m below present levels. Most of the Gulf would have 
consisted of exposed lowlands dominated by the volcanoes of Hauturu (Little Barrier) and Aotea 
(Great Barrier) islands. Inundation by the sea began around 15,000 years ago and approximately half 
of the outer Gulf was submerged within 3,000 years, producing a north-facing bay with tidal inlets 
in the main channels. It took another 2,500 years for the sea level to rise to approximately 28 m below 
present levels, producing an outer Gulf with a shape similar to today’s coastline, but the innermost 
Gulf remained a terrestrial plain or estuary. Modern sea-level position was achieved by about 6,500 
years ago (Manighetti and Carter 1999), when the southern shoreline of the Firth of Thames was 

3. One Tree Hill is an older “shield” volcano that was formed through a similar process.



State of the Environment Report 2011 23

around 13 km inland of its current position. The build-up of volcanic sediment brought down the 
Waihou and Piako rivers shifted the Firth of Thames’ shoreline north at a rate of around 2 km every 
thousand years, and formed an extensive mud wedge which extends seaward of the current shore-
line. Following the last glacial period, extensive peat bogs also formed on the Hauraki Plains. These 
initially developed as a series of small mires of podocarp-angiosperm swamp forest during mild 
climatic conditions. Over the past 10,000 years or so, the peat bogs have expanded and retracted in 
response to climatic conditions and changes in the shoreline.

Figure 2: Map of Ferdinand von Hochstetter (1859), showing the braided river fan and swampy peat  

bog that once covered the Hauraki Plains. This feature was largely created by the Waikato River, prior to its  

course shifting to the west coast around 20,000 years ago (map reproduced courtesy of Early New Zealand  

Books Collection, University of Auckland Library, www.enzb.auckland.ac.nz/). 
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3.1.2 Rivers

River catchments4 of the Hauraki Plains make the largest contribution to the catchment of the Hau-
raki Gulf, comprising around 47% of the total river-catchment area (Figure 3). River catchments on 
the eastern side of Coromandel Peninsula are also relatively large, contributing to 18% of the total 
river-catchment area. The remaining 35% of the Gulf’s river catchments are made up of:

 – the western Coromandel, Tamaki Strait and the western Gulf north of Waitematä Harbour, 
which each contribute around 8% to the total area;

 – the Waitematä catchment, which contributes 5% to the total area; and
 – the western Firth of Thames and Barrier Islands, which each contribute around 3% to the  

total area.

3.1.3 Currents and circulation

Water circulation and currents in the Hauraki Gulf are largely driven by the combined influences 
of ocean currents, wind, tides, bathymetry and the shape of the coast. The East Auckland Current 
is a key oceanographic feature of the outer Gulf, which flows southwards along the margin of the 
continental shelf and effectively defines the boundary between coastal and oceanic waters. The 
continental shelf bulges out in the northern Gulf, where the 200 m depth contour is situated around 
80 km from the mainland. Further south, the continental shelf curves towards the shore and in 
the southern-eastern section of Coromandel Peninsula the 200 m depth contour is only 23 km out 
from the coast. Depths increase sharply out from the Alderman Islands to exceed 500 m at the Park 
boundary. 

The central Gulf is relatively flat with seabed slopes as low as 1:2000. This area gradually shoals 
from water depths of 40 to 50 m to the shores of the inner Gulf and Coromandel Peninsula. A very 
gentle slope of around 1:1500 leads from the central Gulf to sand and mudflats at the southern end of 
the Firth of Thames. Seabed gradients are steeper north of Tawharanui Peninsula and on the eastern 
side of Coromandel Peninsula. They also increase offshore, with slopes of 1:400 towards the shelf 
break (Manighetti and Carter 1999).

4. As defined using National Institute of Water & Atmospheric Research Ltd’s (NIWA) river environment classification.
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Figure 3: Individual (a) and combined (b) river catchments of the Hauraki Gulf. Individual catchments  

are coloured according to the complexity of their river systems, with first-order streams branching once  

between the ocean and their headwaters and sixth-order streams branching six times.

A. B.

Coastal incursions of clear oceanic water regularly occur in summer, when south-easterly winds drive 
warm oceanic surface waters onshore, and occasionally into the inner Gulf through Jellicoe Chan-
nel (Sharples 1997). In contrast, flows through Cradock Channel appear to bypass the inner Gulf, and 
be deflected out through Colville Channel (Greig 1990). Incursions of oceanic surface waters have 
a major influence on the inshore ecosystem. Plankton species, such as salps, are commonly carried 
inshore with the oceanic water, leading to changes in the composition and dynamics of the water 
column community (Zieldis et al. 1995). These incursions are also thought to be responsible for the 
occasional blooms of toxic algae such as Gymnodinium sp., which pose a risk to humans and marine 
species (Chang et al. 1995).

An important consequence of south-easterly winds driving warm oceanic water inshore is 
downwelling. This takes nutrient-rich water away from the coast, so fewer nutrients are available 
to support algae growth. Conversely, northwest winds drive coastal waters offshore, leading to 
the upwelling of cool, nutrient-rich water that fertilises the continental shelf and promotes algae 
growth. Predominant wind directions typically cause seasonal upwelling in winter and spring, and 
downwelling in summer (Broekhuizen et al. 2002). However, weather patterns also vary with El 
Niño and La Niña conditions. During El Niño, winds tend to blow from the west, causing upwelling, 
whereas easterlies prevail during La Niña conditions, causing downwelling. The shape of the coast 
has a major influence on water mixing as well, with headlands and islands causing upwelling in tidal 
eddies (Black et al. 2000).

The Gulf tide has a vertical tidal range of 1.9 to 2.9 m. Tidal currents tend to be greater on the 
eastern (Coromandel) half of the inner Gulf, and in the narrow gaps between islands and headlands 
(Black et al. 2000). The eastern side of Coromandel Peninsula generally has weak tidal flows off the 
coast, but currents are stronger in the north, where the Mercury Islands constrict and accelerate 
flows (Bradshaw 1991). Wind also defects tidal currents, so circulation patterns in the inner Gulf vary 
depending on both tide and weather conditions. 
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3.1.4 Sediments

The seabed in the Hauraki Gulf consists mainly of subtidal sediment, with intertidal sand and mud-
flats, a relatively narrow band of intertidal and subtidal reefs, and sandy, pebbly and cobbly beaches 
around the coastal margin. Sediment characteristics are influenced by geology, geomorphology (i.e. 
the shape of the coast), land erosion, currents, depth, exposure and biological features. Local vari-
ation in these characteristics has created a diverse mosaic of sediment types throughout the Gulf. 
Estuaries act as active sediment traps that accumulate sediments from both the land and the sea. 
Their sheltered nature and intimate connection with the land makes them sensitive to changes in 
sediment run-off patterns. However, some types of estuary are more prone to accumulating land-
derived sediment than others. The vulnerability of estuaries to sediment accumulation depends on 
the geology and land cover of the surrounding catchment, and how the estuary processes sediment. 
Five types of estuary have been identified in the Hauraki Gulf (Hume et al. 2007, Figure 4), with 
the most common being types “D” (coastal embayments such as Mercury Bay), “E” (tidal or barrier-
enclosed lagoons such as Whangapoua Harbour) and “F” (barrier-enclosed lagoons or drowned val-
leys such as Waitematä Harbour). 

Type D estuaries, such as Mercury Bay and Tryphena Harbour, do not tend to accumulate ter-
rigenous sediments because hydrodynamic and sediment processes are dominated by the ocean. 
Mixing and sedimentation within these estuaries is driven by wind and waves, and as a result their 
substrates are mostly sandy. Type E estuaries, such as Coromandel Harbour, are shallow, oval basins 
with simple shorelines and extensive intertidal zones. These estuaries are less susceptible to terri-
genous sediment accumulation because they are well flushed with small river flows and large tidal 
volumes, so most of the water leaves the estuary on the outgoing tide. Wave-generated resuspen-
sion of the substrate and strong flushing causes these estuaries to maintain sandy beds. Type F estu-
aries, such as the Whitianga and Waitematä harbours, have complex shorelines and numerous arms 
leading off a main basin. The main bodies of Type F estuaries have sandy substrates, but sheltered 
side branches tend to accumulate muddy terrigenous sediments because wind and wave-driven 
resuspension of the substrate is limited in these parts of the estuary. The two remaining types of 
estuary (Types B and C) are associated with tidal river mouths in the southern Firth of Thames and 
at Pakiri Beach (Type B), and at Waikawai Beach and Awana Bay (Type C). Type B estuaries tend to 
be muddy except in areas of high tidal flows, while Type C estuaries have lagoons with coarser sub-
strates at their mouths. 

Hydrodynamics control sediment patterns beyond estuarine and sheltered near-shore environ-
ments of the Gulf (Figure 5a). The input of new sediment into the central and outer Gulf is mini-
mal and consists of fine sediment loads coming from local rivers. Most sediments on the continen-
tal shelf are therefore relict sands which accumulated over thousands of years, and are continually 
redistributed by near-bottom currents driven by tides, winds, waves and oceanic incursions. Storms 
are probably the major agent for redistributing these sediments and are potentially capable of mobi-
lising bed sediments in 100 m of water (Manighetti and Carter 1999). Modelling suggests that the 
prevailing direction of sediment transport is southwards across the shelf and through Jellicoe and 
Cradock channels, with sand mobile for up to 33% of the time (Manighetti and Carter 1999).

Local variations in hydrodynamic patterns cause sediment characteristics to vary widely around 
the central and outer Gulf. The amount of mud on the seabed increases toward the centre of the 
inner Gulf, peaking halfway between Whangaparaoa and Coromandel peninsulas (Figure 5b). Acous-
tic surveys also indicate that there is a progressive change in the characteristics of the seabed from 
the southern Firth of Thames and Tamaki Strait, to the mid-Gulf area south of Mahurangi Harbour 
and Cape Colville (Morrison et al. 2003). This is consistent with the gradual fining of sediment toward 
the inner Gulf. Sediments coarsen from sandy-mud to muddy-sand towards Colville Channel, with 
both sediment types also containing sand to gravel-sized shell debris. Colville Channel has a dis-
tinctive mosaic of sediments that range from almost pure shell-gravel to shelly-gravelly-sand and 
muddy-gravelly-sand. 

Sediments progressively become finer east of Colville Channel, with sandy mud becoming preva-
lent as the sea deepens across the continental shelf. A deep area of sediment accumulation is also 
located around Mokohinau Islands, with a pocket of fine sediment east of the islands (Figure 5). 
Another significant feature is a large body of sand that extends out from Pakiri Beach. In water 
depths of 40 to 60 m this sand is mounded into 5 m high asymmetric dunes, which are spaced 500 
to 1,000 m apart and aligned perpendicular to the prevailing alongshore currents. 
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Coastal sediments on the eastern side of Coromandel Peninsula can be broadly grouped into older 
sediments formed by shore erosion as sea level rose following the last glacial period, and more recent 
sediments derived from new material that has passed through infilled estuary systems. The older 
sediments were primarily eroded from steep, rocky headlands and deposited in adjacent embay-
ments, where they created thick sheets of sand and sand barriers. Over the last 6,500 years, waves 
and currents have reworked, sorted and redistributed these sediments, while the infrequent but 
intense storms have formed large dunes in water depths of 20 to 80 m. Recent sediments tend to be 
comprised of fine and very (often muddy) fine sands and are particularly abundant across the upper 
shoreface and mid-shelf surfaces, and in Mercury Bay, these sediments completely blanket the older 
sediments (Bradshaw et al. 1994).

Figure 4: Distribution of estuary types in the Hauraki Gulf according  

to the categories provided in Hume et al. (2007).
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Figure 5: Patterns in the distribution of (a) sediment pools and (b) fine sediment (percentage of mud) in the  

Hauraki Gulf (adapted from Manighetti and Carter 1999). Arrows provide a qualitative indication of the magnitude  

and direction of sediment transport in relation to various sediment sources and hydrodynamic forces.

3.1.5 Reefs

Reefs provide a fringe of structurally complex habitat along the margin of the shore and in isolated 
patches throughout the Gulf. They are situated across a range of exposures, which vary from high-
energy environments on rocks and islands of the outer Gulf to benign conditions within estuaries. 
Similarly, they occur along a continuum of terrestrial influence, with some reefs arising in areas that 
experience high sediment loads and salinity fluctuations due to freshwater run-off, while others 
are found in near-oceanic conditions. The depth range of reefs also changes from the inner to outer 
Gulf, with outer Gulf reefs covering a much greater depth range than reefs in the inner Gulf, and in 
harbours and estuaries. 

Reefs on Coromandel Peninsula, Aotea (Great Barrier Island) and on islands of the eastern Coro-
mandel coast are largely of volcanic origin. Volcanic formations on Coromandel Peninsula and Aotea 
(Great Barrier Island) overlay ancient basement rocks (greywacke), which were formed on the seabed 
around 140 to 250 million years ago. Pockets of greywacke reef occur in the northern half of Coro-
mandel Peninsula and Aotea (Great Barrier Island), with the largest pockets found at their tips. Reefs 
from the western Firth of Thames to Maraetai and from Ponui to Mototapu islands have a similar 
origin but are part of the Hunua formation. These rocks also occur on Kawau Island, Tawharanui 
Peninsula and around Leigh. Mainland reefs on the western side of the Gulf from Maraetai north 
are mainly comprised of softer, more erodible sand and mudstones that were formed around 20 to 
25 million years ago (Grant-Mackie 1983, Edbrooke 2001). These reefs are occasionally interrupted by 
small reefs formed by volcanic flows. Examples of these occur at Meola Reef, North Head, Milford 
Beach and Ti Point. Reefs around Rangitoto Island and Hauturu (Little Barrier Island) are of volcanic 
origin as well.

Coastal exposures of basement greywacke tend to form hard rocky shores with prominent head-
lands and bouldery to pebbly beaches. Volcanic shores on Coromandel Peninsula form hard rocky 
shores with bouldery beaches also, but these shores often have large amounts of mud associated 
with them, particularly in the southern Firth of Thames. Recent basalt reefs, such as those around 
Rangitoto Island and Meola Reef in the Waitematä Harbour, are jagged, irregular and extremely 
rocky. In contrast, Waitematä sediments are easily eroded by mechanical and chemical processes 
and tend to form steep, soft cliff faces, with distinct, relatively flat shore platforms and shelly, 
medium-fine sandy beaches (Greig 1982).



State of the Environment Report 2011 29

3.1.6 The Gulf's ecosystem

Marine life in the Gulf is sustained by energy from the sun (i.e. light), carbon and nutrients being 
captured by seaweeds (macroalgae), microscopic plants (microalgae including phytoplankton) and 
other plants (such as seagrass, mangroves and other coastal vegetation), and by being passed up 
the food chain. Carbon is freely available, so plant growth is generally limited by the availability of 
light and nutrients. The main nutrients are nitrogen and phosphorus, with nitrogen being the most 
important for plant growth in the Hauraki Gulf because its supply is highly variable, whereas phos-
phorus tends to be more readily available (Broekhuizen et al. 2002). 

Productivity varies seasonally, due to the balance between light and nutrient availability. Pulses 
of nitrogen-rich water from the outer Gulf, together with the mixing of the water column and sea-
sonal variation in light, play pivotal roles in phytoplankton growth. Intrusions of nitrogen-rich bot-
tom water from the outer Gulf and the remobilisation of deposited nitrogen cause nitrate concen-
trations to be greatest near the seabed of the inner Gulf. The flow of nutrients between relatively 
dark bottom waters, where algae growth is limited by low light levels, to bright surface waters, 
where growth is limited by the supply of nutrients, has a significant influence on primary production. 
However, seasonal stratification of the water column creates a barrier in the water column, which 
obstructs nutrient mixing and affects primary production.

Stratification is caused by:
 – freshwater inputs which produce a buoyant, low-salinity layer that “floats” on heavier,  

high-salinity bottom waters; and
 – high summer temperatures, which warm the upper part of the water column causing water  

in it to rise and form a distinct surface layer that “floats” on the cool bottom waters.

In the Firth of Thames, freshwater run-off from the Waihou and Piako rivers causes a moderate 
amount of salinity-driven stratification in winter and early spring. Short winter days and the trap-
ping of nutrients in dark bottom waters limit algae growth over this period. During late spring and 
early summer the water column becomes alternately mixed and stratified, as the influence of fresh-
water inputs decrease and the influence of temperature increases. Productivity rises dramatically 
in summer, when surface waters warm up and sustained temperature-driven stratification traps 
nutrients in bright surface waters. In late summer, nutrients become depleted in the surface layer 
and, consequently, productivity decreases again (Chang et al. 1995, Broekhuizen et al. 2002).

In reality, this simplistic description of microalgae productivity is complicated by climatic condi-
tions (and their effect on upwelling, mixing and nutrient supply) at the scales of days, weeks and 
years (Broekhuizen et al. 2002, Zeldis et al. 2005). As a result, large variations in microalgae concen-
trations occur from year to year and microalgae are not uniformly spread around the Gulf. 

Microalgae are consumed by planktonic invertebrates that live in the water column. These grazers 
are subsequently eaten by other invertebrates and fish which, in turn, are consumed by a series of 
other animals. The zooplankton community is composed of fish and invertebrates that either:

 – spend their whole lives in the water column; 
 – have a dispersive larval phase that is spent in the water column, but at later stages settle  

on the seabed where they develop into adults and remain; or 
 – regularly move between the seabed and the water column. 

Most sessile (i.e. relatively immobile) species rely on a planktonic dispersal phase to spread and colo-
nise new space.

Schools of crustaceans (such as krill, Euphausia superba) and plankton-feeding fish such as anchovies 
(Engraulis australis), pilchards (Sardinops sagax) and saury (Scomberesox saurus) occur throughout 
the Gulf. Tight concentrations of these small animals commonly lead to “feeding frenzies”, with a 
variety of predators attacking from the sea and air. Swarms of kahawai, jack mackerel, snapper and 
kingfish attack from the sides and below, while gannets (Morus serrator), shearwaters, petrels (Pro-
cellariidae) and terns (Laridae) strike from the air. Larger mammalian predators such as short-beaked 
common dolphins (Delphinus delphis), common bottlenose dolphins (Tursiops truncates) and Bryde’s 
whales also feed on the small fish and crustaceans involved in such “boil-ups”. Bryde’s whales are 
present in the Gulf year-round and are frequently seen feeding in, or moving through, central to 
outer parts (Baker and Madon 2007, Behrens 2009) (Figure 6). In New Zealand their prey is likely to 
include krill (Euphausia superba), saury (Scomberesox saurus), anchovy (Engraulis australis), garfish 
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(Hyporhamphus ihi), jack mackerel (Trachurus declivis), pilchard (Sarninops sagax) and sprat (Sprattus 
antipodum) (Behrens 2009). Schools of these fish and crustaceans are therefore considered to be 
critical for the continued survival of Bryde’s whales in the Gulf (pers. comm. Rochelle Constantine, 
University of Auckland). 

Figure 6: Bryde’s whale (a) emerging at the surface while feeding on a school of fish (photo courtesy  

of Stephanie Behrens), and (b) sightings recorded by Stephanie Behrens and Dolphin Explorer  

from 2000 to 2008 (red dots), and presented in Baker and Madon (2007) (blue dots).

 A.

 B.
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Sediments are the most extensive seabed habitat in the Gulf. Their characteristics vary widely due to 
differences in grain size, organic matter and the relative amounts of shell and mineral material. Sedi-
ments are formed into sand and mudflats, channels, spits, dunes and corrugations. They vary along 
texture gradients and are moulded into a patchwork of composition and relief by waves, eddies and 
currents. This habitat complexity is further enhanced by interactions between sediments, currents, 
depth, water conditions and biology.

Sediment-based ecosystems have been extensively studied in a number of the Gulf’s estuaries. 
The sheltered coastal margins of estuaries commonly contain a band of coastal saltmarsh, with 
dense plant patches which provide habitat for secretive native birds, such as the fernbird and the 
banded rail. Saltmarsh habitats usually have a discrete margin that adjoins open sediment flats, shell 
banks or mangrove forest. Historically, the extent of mangrove forests has been relatively limited, but 
in recent years mangroves have expanded in many places (Morrisey et al. 2007a). Seagrass meadows 
occur beyond the mangrove zone in many of the Gulf’s estuaries. Seagrass can form extensive beds, 
which extend from the intertidal to shallow subtidal zone, but it also occurs in much smaller patches. 

Estuaries are highly productive ecosystems that support large numbers of shellfish and other 
animals. The animal communities living in estuary sand and mudflats are maintained through the 
energy they derive from microalgae, which is filtered from the water column (by filter feeders) or 
collected from the seabed (by deposit feeders). In turn, filter and deposit feeders are consumed by 
predatory invertebrates (such as whelks), fish and birds. Animal distributions within estuaries are 
driven by physical, chemical and biological processes that operate on a range of different scales. On 
the estuary-wide scale, ecological processes reflect the response of individual species to broad-scale 
variation in factors like sediment texture, sediment inputs, tidal inundation, currents and freshwater 
inputs. On smaller scales, the characteristics and behaviour of individual species and interactions 
between species become increasingly important (e.g. Thrush 1989).

Open-coast sediment systems are made up of a patchwork of benthic species, whose broad-scale 
distributions frequently overlap. Within this mosaic, populations of individual species often occur in 
very discrete, high-density beds with clearly defined margins. Well-known examples include green-
lipped mussels and horse mussels, scallops and sand dollars, but many other species are also distrib-
uted in this manner. Densities and absolute numbers of individual species can be extremely high 
within these beds. For example, Taylor and Morrison (2008) estimated that an approximate 1.5 km2 

patch of clams (i.e. the morning star shell, Tawera spissa) in Omaha Bay contained around 1.4 billion 
individuals. Depth, sediment, waves and currents appear to influence species distribution in near-
shore coastal areas (Thrush et al. 2001, Taylor and Morrison 2008, Chiaroni et al. 2008), but there is 
little information on benthic systems further from shore. 

Diversity can be very high in open-coast sediment systems. For instance, 204 taxa were recorded 
in the suction and grab samples collected from Omaha Bay (Taylor and Morrison 2008). Species that 
protrude above the seabed, such as horse mussels, increase diversity by providing hard substrates 
that are colonised by a variety of other sessile species (Thrush et al. 2001), and refuges for fish (Usmar 
2009) and mobile invertebrates such as lobsters (Kelly et al. 1999). These habitats tend to be sen-
sitive to physical disturbance and can be very slow to recover (if at all). Historically, extensive and 
dense beds of green-lipped mussels covered large parts of the seabed in Tamaki Strait and the Firth 
of Thames (Reid 1968, Greenway 1969). 

The interface between reefs and sediments is an important zone for a number of species which 
use the reefs as a refuge and forage out on the surrounding sandflats. Probably the most impres-
sive species to display this behaviour is the crayfish (actually spiny lobsters, Jasus edwardsii), which 
gather on the reef margin to replenish themselves after not eating for weeks to months during the 
mating and moulting seasons. In protected areas where populations have recovered, hundreds of 
crayfish pile up on the reef margin during the day before moving out on to the sandflats to forage 
at night (Figure 7). 
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Figure 7: Crayfish gathering on the reef margin in Tawharanui Marine Park  

prior to moving out on to the surrounding sandflats to forage.

Trawl surveys conducted by the survey vessel Kaharoa in the 1990s indicate that the biomass of 
fish living near the seabed (i.e. demersal fish) in the Hauraki Gulf is dominated by snapper (Pagrus 
auratus). Total fish biomass and snapper biomass tend to be highest in southern parts of the inner 
Gulf and the Firth of Thames (Figure 9), even though snapper utilise many habitats and can occur in 
most parts of the Gulf. Although fish biomass is dominated by snapper, this species may not be the 
most abundant fish in the Gulf. For instance, it is estimated that Omaha Bay alone could contain up 
to 4 million worm-eels (Scolecenchelys australis), which are small snake-like fish that are rarely seen 
owing to their burrowing behaviour (Taylor and Morrison 2008). 

The distribution and abundance of other fishes varies in relation to species-specific adaptations. 
Many have evolved to occupy very specialised niches. For instance, kelp-eating butterfish are mainly 
found within a narrow depth band on reefs that are exposed to surge and with extensive kelp cover.

They are most common in water depths of less than 10 m, where, in northern waters, they browse 
almost exclusively on the brown seaweeds, flapjack (Carpophyllum maschalocarpum) and paddle 
weed (Ecklonia radiata). Marblefish are also herbivorous and commonly live in the same areas as but-
terfish, but they prefer to graze on leafy red and green seaweeds (Clements 2003). In contrast, many 
other fish species have much broader distributions and inhabit large, and relatively diffuse, areas in 
the Gulf. However, the distribution of fish is invariably patchy with individual species tending to be 
more abundant in some parts of the Gulf than others (Kendrick and Francis 2002).

Some habitat features appear to be particularly valuable in terms of sustaining fish diversity and 
abundance. Physical or biological features that add structural complexity in otherwise featureless 
habitats are especially important for juvenile fish. For example, small sandstone reefs with adjoin-
ing beds of Neptune’s necklace (Hormosira banksii) and mangrove forest act as nursery habitat for 
juvenile parore (Girella tricuspidata) in Whangateau Harbour, and are thought to be the main source 
of adult parore on coastal reefs in the Leigh area (Morrison 1990). Subtidal seagrass is an important 
nursery habitat for a variety of fish species including snapper, trevally, parore, garfish/piper, spot-
ties and triplefins. Horse mussel (Atrina pectinata zelandica) beds act as nursery habitat for snapper 
(Usmar 2009), while mangroves provide nursery habitat for short-finned eels (Anguilla australis). 
Sponge, maerl and kelp beds may perform similar functions also (Morrison et al. 2009). 
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In general, fish diversity and abundance are more concentrated on reef or physically complex 
habitat than they are in two-dimensional habitats such as sand or mudflats. Similarly, reefs provide a 
stable surface for the attachment of seaweeds, sponges and a variety of other organisms. Seaweeds 
are important habitat-formers that support diverse and productive assemblages of small mobile 
invertebrates. These small animals contribute about 80% of energy flow and materials through 
rocky-reef animal communities (Taylor 1998). The lower limits of seaweed distributions are set by 
light availability. The depth range of individual seaweed species is therefore narrower in the inner 
Gulf where light levels are reduced by high water turbidity (Grace 1983).

Figure 8: Fish schooling around reefs in Tawharanui Marine Park.

3.1.7 Terrestrial ecology

For thousands of years prior to the arrival of humans the Gulf’s catchments were completely covered 
by forest or wetlands, apart from small flood-prone river terraces, steep cliffs, active sand dunes and 
areas that were recently disturbed by volcanism, slips from other natural events (McGlone 1989). 
Most terrestrial plants and animals had evolved over millions of years in isolation from the rest of 
the world, but occasionally invertebrate, reptile, bird and plant species managed to find their ways 
to New Zealand by the westerly wind drift and island hopping. Other than bats, no land mammals 
existed. Native birds, reptiles and insects therefore filled the niches occupied by mammals else-
where. Birds took on the roles of large grazing herbivores (such as moa), fearsome predators (such 
as Forbes’ harrier) and tiny ground-dwelling insect feeders (such as flightless wrens). Some insects, 
such as weta, also filled the niches of small rodents in other parts of the world, which play a similar 
role to mice in New Zealand’s forests (Flemming 1977). Weta and mice have similar sizes, nocturnal 
foraging habits and diet. They both use diurnal shelters, display polygamy and even have similar 
droppings. Seabirds were abundant also and comprised a large proportion (30%) of the total bird 
fauna (Craig et al. 2000). 

The lack of ground-dwelling predators led to the evolution of flightlessness and gigantism in 
birds and insects, with many species using concealment rather than flight to elude airborne attack-
ers (Trewick et al. 2005, Tennyson and Martinson 2006). New Zealand birds, reptiles and insects also 
tended to be long-lived and have slow breeding rates. These characteristics are typical of species that 
evolved of oceanic islands without predatory mammals, but they ultimately doomed New Zealand’s 
native fauna when exotic mammals were introduced by humans (Daugherty et al. 1993, Tennyson 
and Martinson 2006). 
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Figure 9: Spatial variation in (a) total fish biomass and (b) the biomass of snapper (dot size).  

Data was obtained from MFish trawl surveys conducted by the research vessel Kaharoa  

in the 1990s and was standardised to 1 km trawl lengths.

A. B.

3.2 Human impacts

Humans have had a major, and predominantly unidirectional, impact on the Gulf ever since the 
arrival of Mäori around 1200 to 1300 AD and Europeans in the early 1800s. The effects of Mäori set-
tlement in New Zealand are well documented. Ogden et al. (2006) summarises these as: 

 – extinctions or drastic reductions of many small bird, vertebrate and invertebrate species,  
largely due to the rapid spread of kiore (Rattus exulans); 

 – extinction of the large birds by hunting (especially moa);
 – direct and indirect impacts on coastal marine mammals, fish and shellfish;
 – destruction of forest vegetation by fire; and
 – consequential effects of increased erosion and sedimentation.

Mäori used fire to clear forests from large parts of the country (McGlone 1983, Ogden et al. 1998). 
For instance, the Tämaki Makau Rau, Auckland isthmus, had been cleared of larger trees by the time 
Europeans arrived, apart from the remnants of bush that still remained in steep gullies (Stone 2001). 
Fire had also cleared forests in areas such as Aotea (Great Barrier Island) and Kauaeranga Valley on 
Coromandel Peninsula (Byrami et al. 2002, Ogden et al. 2006), which led to associated increases 
in estuary sedimentation (Ogden et al. 2006). Across New Zealand, Mäori hunting eliminated 26 
species (30%) of land bird and 4 (18%) species of the seabird, while ecosystem loss and companion 
animals eradicated a further 8 land birds (Craig et al. 2000). Mäori hunting also removed fur seals 
from the Gulf (Smith 1989) and annual harvests of thousands of tons of snapper were potentially 
caught in pre-European New Zealand (Leach 2006, Parsons et al. 2009). Tuatara, some lizards and 
some invertebrates were also displaced from the mainland, and became restricted to relatively small 
offshore islands (Craig et al. 2000). 

However, the rate of environmental degradation increased rapidly after 1840, as European set-
tlers harvested or cleared forest for timber, towns and agriculture, and introduced a new wave of 
exotic mammals. This modified or replaced natural habitats, caused widespread erosion and led to a 
new series of extinctions (Craig et al. 2000, Swales et al. 2002, Hatvany 2008). Nationally, a further 
16 land birds were driven to extinction, together with a bat, a fish and a number of invertebrates 
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and plants. Most of the remaining terrestrial fauna declined and many are continuing to do so. The 
majority of native birds, bats, lizards, frogs and invertebrates are now characterised by low popula-
tion densities or local extinction, range contraction and severe population fragmentation. Offshore 
islands provide the sole refuge for both species of tuatara, 37% of lizard species and many birds (Craig 
et al. 2000). 

The history of the Hauraki Plains and Firth of Thames probably provides one of the most poign-
ant examples of environmental degradation and habitat loss in the Gulf and its adjoining catch-
ment. These changes have an ongoing legacy in terms of their cumulative, long-term and large-scale 
impacts on the Gulf.

Polynesian forest burning around Thames occurred as a series of discrete fires starting around 
630 to 810 years ago5, which initially did not devastate the forests but did have an adverse cumula-
tive effect over time (Byrami et al. 2002). New Zealand tree species are generally killed by fire and 
neither re-sprout nor re-establish from buried or shed seeds. Therefore, when fire occurs the original 
vegetation is destroyed and a prolonged succession begins, taking centuries for the original forest 
structure and composition to re-establish (Ogden et al. 1998). However, the Hauraki Plains wetland, 
which was the largest in New Zealand, was largely intact when Europeans first arrived. This wetland 
had developed over thousands of years (Newnham et al. 1995) and, for Mäori, was an important food 
basket that provided waterfowl, fish and edible plants (Hunt 2007). 

From 1875 to 1920 the landscape of the Hauraki Plains was completely transformed, through 
the logging of kahikatea (white pine), diking and canalising of rivers, and drainage of the land. For-
ests of giant kahikatea, which thrived in the wetlands, were felled and used for butter boxes, rabbit 
crates and packing cases to support trade between New Zealand, Australia and Britain. Wet and 
low-lying land was then drained for dairy farming. This industry took off in the late 1880s thanks to 
the advent of refrigeration, which made bulk dairy sales to British markets a lucrative New Zealand 
trade. By 1910, fewer and fewer kahikatea were being milled, and cross-cutters were being sent out 
into swamps to clean up by stumping and burning, as well as scattering grass seed, turning “useless 
swamp into rich farmland” and building stopbanks “to prevent the tide backing up over the flats” 
and “the rivers from spreading where they chose”. Most of the Hauraki flood plain was eventually 
logged, drained and transformed into a geometric grid of dairy farms and embanked rivers (Hatvany 
2008). The exception is the 7,000 ha Kopuatai peat dome which was too low-lying to be developed 
into farmland.

The conversion of wetlands on the Hauraki Plains to intensive dairy farms provided employment 
and made a substantial, and ongoing, contribution to the local (and national) economy. However, it 
also led to the loss of an important taonga for Mäori and the destruction of an extremely valuable 
terrestrial ecosystem. It exacerbated sediment and nutrient loads, and at the same time compro-
mised the ability of the natural drainage system to filter water and strip these contaminants prior to 
them flowing to the Gulf. Kauri logging and mining on Coromandel Peninsula increased erosion and 
sediment run-off as well, while mining also produced a legacy of heavy-metal contamination (Kim 
2007, Harding and Boothroyd 2004, Napier et al. 2009).

The impacts of these, and other, activities on the Firth of Thames have been dramatic. On aver-
age, over the past 6,500 years the southern coastal margin of the Firth of Thames has shifted sea-
wards at a rate of around 2 km every thousand years (i.e. 2 m per year). However, the rate of sedi-
mentation and seaward expansion appears to have increased significantly during the past 50 years 
or so. These changes are closely linked to historical increases in sediment loads following catchment 
deforestation and river works.

Until the mid-1940s, tidal flats in the southern Firth of Thames were composed of gently-sloping 
muddy-sand flats that were largely free of mangroves. From the 1940s onwards, there was a marked 
shift in sediment texture from sand to mud, and by the mid-1960s the former muddy-sand flat had 
been replaced by mudflat (Swales et al. 2008). Mangroves began to colonise the upper mudflat in 
the mid-1950s, and rapidly expanded seawards (Figure 10). Mangroves have a preference for soft, 
muddy, waterlogged sediments, and readily colonise areas where gradual sediment accretion cre-
ates habitat with suitable sediment characteristics and elevation. The level of the substratum must 
be sufficient to expose seedlings to the air for part of the tidal cycle, because very young seedlings 
are intolerant of continuous submersion (Morrisey et al. 2007a). The expansion of mangroves is 
therefore a natural response to the increase in land erosion and sediment run-off caused by human 
activities, which led to coastal infilling in the southern Firth of Thames (Figure 11). 

5. Based on pollen data collected from Kauaeranga Valley.
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By the mid-1970s, surface elevations within the forest were one metre above the adjacent mud-
flat. Consequently, the supply of sediment to this area declined and the forest became progressively 
isolated from the mudflat. However, large quantities of sediment were still being trapped and depos-
ited along its seaward margin (average accumulation rate of 100 mm per year-1). Sedimentation 
rates in this area increased two to ten-fold, and by the mid-1980s, a wide mud platform of several 
hundred metres had formed along the margin of the old mangrove forest. This platform was raised 
0.8 to 0.9 m above mean sea level and gradually became colonised by mangroves until the early 
1990s, when a period of rapid mangrove expansion and infilling occurred. Overall, mangroves have 
expanded by about 900 to 1,000 m into the southern Firth of Thames since this process began 
(Swales et al. 2008). 

There is little doubt that the expansion of mangroves led to the loss of ecologically diverse and 
productive open intertidal sand and mudflats. Although empirical data is not available, it is inevi-
table that the extent and abundance of mud-sensitive benthic species (such as cockles and wedge 
shells) would have been reduced. The spread of mangroves has also altered the distributions of 
roosting shorebirds, with areas that formerly held substantial quantities being abandoned and some 
species declining in number (Battley and Brownell 2007). Displacement has been particularly notice-
able for wrybills (Anarhynchus frontalis), golden plovers (Pluvialis fulva), red knots (Calidris canutus) 
and whimbrels (Numenius phaeopus). However, mangrove expansion has increased available habitat 
for birds that feed, roost or breed within them.

Similar patterns of land development and associated sediment run-off were repeated through-
out the Gulf, albeit at smaller scales. In most of the estuaries studied, sediment accumulation rates 
increased after 1840, and again after 1950 (see Section 4.5). Mangrove expansion has frequently fol-
lowed (Morrisey et al. 2007a, Section 4.5), and has also been potentially encouraged by other factors 
such as warmer temperatures, elevated nutrient levels and hydrological obstructions (e.g. cause-
ways) (Morrisey et al. 2007a).

Figure 10: Expansion and infilling of mangroves in the southern Firth of Thames between (a) 1952, (b) 1977 and  

(c) 2006. Imagery provided by Waikato Regional Council and Terralink International Ltd. Copyright reserved.

 A.

 B.

 C.
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Figure 11: Changes in bed elevation along a shore profile in the southern  

Firth of Thames between 1944 and 2005 (see Swales et al. 2008).

The conversion of a wetland ecosystem to farmland not only led to elevated sediment run-off but 
also increased nutrient loads to the Firth of Thames (Judge and Ledgard 2009). Historically, the Firth 
is thought to have been oligotrophic (i.e. to be low in nutrients and algal growth). However, it is now 
nutrient enriched with nitrogen loads dominated by catchment (mainly from the Waihou and Piako 
rivers) rather than oceanic sources, as they were in the past (Zeldis 2008). As a consequence, the 
Firth is probably more productive today than it was in previous times, but water quality (in terms of 
nutrient levels, colour and clarity) is likely to have diminished. 

Although direct habitat destruction initially occurred on land, it did not stop there. During the 
20th century, fishing directly led to the destruction of what was nominally one of the most valuable 
marine habitats in the Gulf: extensive subtidal mussel beds in the inner Gulf and the Firth of Thames 
(Figure 12). Researchers have only recently begun to appreciate the critical role that large and struc-
turally complex, habitat-forming biota such as green-lipped mussels, horse mussels and sponges 
play in ecosystem processes. Such species are regarded as “ecosystem engineers”, because they have 
a strong influence on other species and the local ecosystem. For instance, large species that grow on 
the seabed, such as green-lipped mussels, increase local biodiversity by providing complex, three-
dimensional habitat in an otherwise flat environment. They provide attachment surfaces for algae 
and immobile invertebrates, refuge for small mobile vertebrates, foraging areas for adult fish and 
probably act as important nursery habitats for juvenile fish. High-density populations of mussels 
can filter vast amounts of water, which increases exchange between the sea floor and the water 
column (bentho-pelagic coupling) and may exert strong controls on phytoplankton populations and 
eutrophication effects (Morrison et al. 2009).

These beds once supported a commercial dredge fishery which operated from the 1920s to the 1960s, 
when the fishery finally collapsed due to very low mussel densities (Reid 1968, Greenway 1969). Sur-
veys of the inner Gulf and Firth of Thames carried out in 2002/03 found that the mussel beds had not 
recovered, even though fishing had ceased 40 years earlier. Only small clumps of mussels were found 
at two sites, the biggest being about 1 m2 in extent (Morrison et al. 2002, 2003). A more recent study 
of remnant mussel beds in the Hauraki Gulf documented a larger bed off Waimangu Point on the 
north-western side of the Firth, which was spread across an area of approximately 64 ha (McLeod 
2009). That study found also that:

 – mussel beds in the Gulf have the highest animal (secondary) productivity rates of any marine 
habitat yet recorded in New Zealand, with most productivity coming from the mussels and 
small mobile invertebrates;

 – mussel harvesting is estimated to have reduced secondary production by small mobile 
invertebrates by 390 to 33,000 tonnes per year (dry weight), which could have supported  
200 to 16,000 tonnes of small predatory fish (wet weight) per year;

 – average fish density on mussel beds was 10 times higher than in adjacent sandy areas; and
 – based on upper estimates of mussel density, historical mussel beds could have filtered the 

entire volume of the Firth of Thames in less than a day, whereas remnant beds would take 
nearly two years.



38 Tikapa Moana – Hauraki Gulf

Populations of individual fish and invertebrate (e.g. crayfish) species became increasingly affected 
by industrial fishing also, which depleted their biomass, changed the age and size structure of their 
populations (by removing old and large individuals) and eliminated the display of some intrinsically 
special and ecologically important behaviours, such as snapper spawning aggregations (Leach and 
Davidson 2000, Parsons et al. 2009, Ministry of Fisheries Science 2010).

Figure 12: Historical distribution of green-lipped mussel in the inner Hauraki Gulf and Firth of Thames (from Morrison  

et al. 2009 and based on original maps in Reid 1968 and Greenway 1969). Reid (1968) used interviews with the two  

families that dominated the mussel fishery to draw maps of where the dense mussel beds once were, as well as  

additional areas fished by either Strongman or Gundlock boats (which used various types of dredge, and boats  

with different towing power). Greenway (1969) drew a map of mussel distribution based on his 1961 survey  

(206 stations), as well as identifying small areas of dredge oysters in the centre of the Firth of Thames.

Urban development has had a major impact in the Auckland Region too, particularly on the Wait-
ematä Harbour and Tämaki Inlet. The complex shorelines and numerous tidal inlets of these estuaries 
provided easy access to seafood resources, sheltered anchorages and tauranga waka (canoe-landing 
sites), and formed coastal “highways” that connected Mäori and European settlements. However, 
the indented nature of the shoreline also impeded catchment, and road and rail development, which 
became increasingly important in the 20th century. In addition, tidal inlets accumulated sediments 
and urban contaminants that were washed into the sea with stormwater run-off (Mills and Wil-
liamson 2008). As Auckland grew from a small settlement in the 1840s to the largest city in New 
Zealand, it progressively sprawled across the catchment of Waitematä Harbour and beyond (Figure 
13). Consequently, over the past 100 years or so, most tidal inlets in Waitematä Harbour and Tämaki 
Inlet have been progressively modified by: reclamation; bridge, causeway, weir and dam construc-
tion (Figure 14); and contaminated sediments. These effects are compounded by modifications to 
the foreshore and seabed for port and boating activities. For instance, an assessment carried out in 
1983 estimated that 45% of the shoreline between North Head and the Auckland Harbour Bridge had 
been modified by reclamation, and 24% of the harbour had been claimed by wharves, breakwaters, 
embankments, causeways and other uses (Dromgoole and Foster 1983). Further encroachment into 
the harbour has occurred since that assessment was carried out.
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Figure 13: Auckland urban sprawl between 1870 and 2001.

Figure 14: Segmentation of Okahu and Hobson bays by rail and road causeways, reclamation,  

breakwaters and pipelines. (Photo courtesy of the former Auckland Regional Council.)
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Sewage disposal has also been a major issue for Auckland. Night-soil was originally collected in the 
developing settlement of Auckland. However, large amounts of sewage and horse droppings still 
ended up in a foul open channel, Ligar Canal, which ran down Queen Street and into the Waitematä 
Harbour. Construction of a sewer to address the problem commenced in 1854, but the appalling 
condition of the canal persisted for many years, such that in 1870 the NZ Herald ran an article which 
described the canal as: “That abomination, the Ligar Canal, is still a pestiferous ditch, the receptacle 
of every imaginable filth, bubbling in the noonday sun”. Mounting intolerance of night-soil collection 
saw the eventual construction of a reticulated sewer system with an outfall at Okahu Bay, which 
began operation in 1914. Sewage was held in tanks (which now house Kelly Tarlton’s aquarium) and 
discharged on the upper half of the tide, after being screened to remove larger solid material. The 
discharge of crude sewage on to shellfish beds directly opposite the ancestral village of Ngäti Whä-
tua was a grievous insult to the tribe. The disposal of human waste to water, especially in such great 
volumes, offends all sensibilities of Mäori people, particularly in proximity to the main habitation 
place, profaning that which is sacred. 

By 1920, it was apparent that the waters around the Orakei outfall and adjacent shores were pol-
luted and the discharge of effluent there a menace to health (Fitzmaurice 2009). In 1933 raw sewage 
was also discharged from two outfalls at both Devonport and Takapuna, and septic tank effluent 
was released through a single outfall at Northcote as well (Hounsell 1935). The discharge from Orakei 
continued until 1960, when sewage from there was finally diverted to the Mangere Wastewater 
Treatment Plant (Fitzmaurice 2009). The diversion of wastewater to Mangere and other metropoli-
tan treatment plants undoubtedly improved water quality in Waitematä Harbour and the inner Gulf. 
However, large parts of Auckland are still serviced by the old sewer network, which causes ongoing 
issues in terms of network capacity and overflows after rainfall events (Figure 15).

Figure 15: Combined wastewater and stormwater overflowing from  

a constructed discharge point following a heavy rainfall event.

The diversion of sewage to the Mangere Wastewater Treatment Plant is probably the most signifi-
cant engineering projects to be carried out, in terms of its positive effect on water quality in the Gulf. 
However, smaller-scale wastewater projects have been undertaken in many other areas too, in order 
to protect or improve water quality and meet the wastewater demands of a growing population. 
These schemes have provided centralised treatment, improved the performance of wastewater net-
works and treatment plants, and reduced the effects of discharges on the Gulf. Over the past 10 to 
20 years, a variety of programmes have also been initiated to minimise the scale and magnitude of 
stormwater contamination and coastal sedimentation. These programmes are using a combination 
of regulation, technological development, infrastructure and community initiatives.
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Perhaps the greatest environmental achievements in the Gulf are related to the protection and 
restoration of its islands, and the protection of marine areas through the establishment of five 
marine reserves and the Tawharanui Marine Park. These initiatives provide small, but critical, refuges 
for threatened bird, reptile and invertebrate species, and marine communities. Introduced mam-
malian predators and herbivores have been eradicated from eight islands in the Gulf, and another 
20 islands have been kept free of these pests. Tiritiri Matangi has been replanted with native trees, 
and similar restoration is now occurring on Motuihe, Motutapu and Moturoa islands. A variety of 
threatened birds and reptiles have also been reintroduced to pest-free islands of the Gulf, where 
populations are now increasing. In addition, populations of heavily exploited species such as lobster 
and snapper have rebuilt to more natural levels in protected marine areas (Kelly et al. 2000, Willis et 
al. 2003). This has caused surprising changes in the broader functioning and productivity of the pro-
tected ecosystems (Babcock et al. 1999, Shears and Babcock 2002), and once again illustrates how 
the effects of humns have led to unanticipated environmental consequences.

3.3 Strategic considerations

1. The Hauraki Gulf and its ecosystem developed in isolation over millions of years. The history 
of human occupation of the Gulf and surrounding land is relatively short, but the effects of 
human activities have been profound, particularly over the past 150 years or so. In all but a few 
instances environmental changes have been negative and unidirectional, such that nearly every 
part of the Hauraki Gulf has been modified by human activities. Key components of the natural 
ecosystem, such as subtidal mussel beds and fish populations, have effectively been lost or 
significantly reduced.

2. The highly successful protection and ecological restoration of islands in the Gulf has provided 
a “lifeline” for native flora and fauna. These refuges are essential for the ongoing survival of 
threatened species which can no longer live on the mainland. Similarly, marine reserves and the 
Tawharanui Marine Park have allowed populations of heavily fished species such as snapper and 
crayfish to rebuild within them. 

3. Indicators used to assess the current state of the environment should be considered relative 
to natural, baseline conditions in the Gulf. Failure to use a natural reference point will almost 
invariably lead to a sliding baseline, which will result in a sequential worsening of environmental 
quality over successive generations.





4.  
 
Environmental Indicators
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4.1 Fisheries

The purpose of the Fisheries Act (1996) is to provide for sustainable utilisation of fisheries resources. 
New Zealand's fisheries are managed with a quota management system, which was introduced in 
1986 to address a concerning decline in some fish stocks. Under this system, New Zealand's coast 
is divided into quota management areas (Lock and Leslie 2007). The Minister of Fisheries must set 
the total allowable catch (TAC) in tonnes for quota species within each quota management area. 
The Minister must allocate the TAC between the customary, recreational and commercial fishing 
sectors. Allowance is also made for incidental mortality that is caused by fishing. Priority is given to 
ensuring that there is sufficient allowance for customary harvest, with the remaining catch being 
allocated between the commercial and recreational fishing sectors (Lock and Leslie 2007). The Min-
ister is required to set a total allowable catch that will maintain each the stock at, or above, a level 
that can produce the maximum sustainable yield (or work towards doing so). The legislation also 
requires all sustainability decisions to take into account: effects on associated and dependent spe-
cies; the maintenance of biological diversity; and, protection of habitat with particular significance 
for fisheries management.

The Fisheries Act specifies that the baseline for sustainable fishery stock management is the con-
cept of maximising sustainable production or achieving the maximum sustainable yield (MSY) from 
stocks. The MSY is the greatest yield (catch) that can be achieved over time while maintaining the 
stock's ability to keep producing. The MSY for a given stock will depend on its biology and environ-
mental influences on its population dynamics. Typically, the MSY is produced by a stock at a biomass 
level (BMSY) well below its unfished state, because the principle relies on achieving productivity 
benefits from more younger, faster-growing fish and less competition for food and space. Fish stocks 
are typically most productive when they are between 20%-40% of unfished levels. The Fisheries Act 
provides for stocks to be managed at biomass levels greater than the BMSY where various factors 
indicate the purpose of the Act would be better achieved by a higher target biomass. These factors 
can include to manage specific environmental risks, or to achieve particular social, cultural, or eco-
nomic objectives.

The total allowable commercial catch for each species is shared among commercial fishery par-
ticipants that own individual transferable quota (ITQ) for that species. The proportion of the total 
quota shares they possess is equal to the proportion of the total allowable commercial catch they are 
allowed to take in any fishing year. The amount of fish able to be commercially harvested is therefore 
tightly regulated. Owing to the reporting required for the commercial sector, it is usually relatively 
simple to obtain information on commercial catch levels (Lock and Leslie 2007). The Maori custom-
ary fisheries regulations ('Kaimoana' regulations) also require reporting to the Ministry of Fisheries. 
However, these Regulations have not been fully adopted within the boundaries of the Hauraki Gulf 
Marine Park and reliable records of customary fishing are not yet available for the Hauraki Gulf (Shan-
non Tyler, MFish Auckland, pers comm.).

In contrast, recreational harvesting is managed using measures such as seasonal closures, bag 
limits, size limits, restrictions on fishing equipment and locations. Reporting of recreational catch is 
not required, therefore recreational harvest quantities are determined through surveys and are more 
uncertain. Consequently, the recreational catch can change in an unknown fashion as the size of the 
fishing population changes, the biomass of stocks changes, patterns of fishing change, and or access 
to sophisticated fishing technology improves.

The quota management system arrested historical declines in key fish stocks such as crayfish and 
snapper (Ministry of Fisheries, Science 2010), but subsequently maintains most stocks in a reduced 
state, with lower biomasses and fewer old and large individuals than could be achieved if an alterna-
tive to the MSY was used as the management target. The Minister can adopt a TAC that will produce 
a biomass above that which will produce the MSY, and has done this for kahawai. In 2010 the kahawai 
KAH1 area TAC (that includes the Hauraki Gulf, but is a much larger area) was set at a level which 
would allow biomass to increase from the current level to 52% of the unfished biomass by 2028 (cf. 
35% of the unfished biomass which would be the biomass that would produce the MSY). This was 
done to increase the non-commercial benefits derived from the kahawai stock. 

The Fisheries Act (1996) provides for the utilisation of fisheries resources while, among other 
things, avoiding, remedying or mitigating any adverse effects of fishing on the aquatic environment. 
However, the incidental effects of fishing on most species that are not directly targeted by fishers, 
and on marine habitats in the Gulf, are currently not well understood and, in general, not actively 
managed. For instance, the ecological effects of trawling and dredging on benthic habitats have 
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not been directly assessed in the Gulf (although a desktop assessment has been carried out for 
scallop harvesting – see Tuck et al. 2006), monitoring of benthic impacts is not being undertaken, 
and controls have not been developed that specifically focus on avoiding, remedying or mitigating 
any adverse benthic impacts. Note that there are spatial controls on activities such as trawling and 
dredging, but these were not implemented to specifically manage benthic impacts and, therefore, 
may or may not, address this issue.

A key tool for improving the management of the adverse environmental effects of fishing is Fisheries 
Plans. MFish has identified their development as a priority in Ministerial Briefings since at least 1999, 
and currently has two approved plans that are relevant to the Hauraki Gulf Marine Park:

 – National Fisheries Plan for Highly Migratory Species; and
 – National Fisheries Plan for Deepwater and Middle-depths Fisheries. 

In addition, draft national plans for inshore finfish, shellfish and freshwater fisheries became opera-
tional as from 1 July 2011. 

It is important to emphasise that, within the context of this report, the primary indicators are con-
sidered in terms of the state of the environment, not the state of the fishery. However, sustainability 
indicators for the fisheries have been developed by MFish and are therefore provided in Section 4.2.1 
below. These are complemented by more detailed information on:

 – the spatial distribution of fishing in the Gulf;
 – the state of three ecologically, economically and culturally important species: snapper,  

crayfish and cockles for example;
 – fisheries ecosystem indicators derived from trawl survey data; and
 – bottom disturbance.

4.1.1 Fishing in the Hauraki Gulf 

Fishing occurs in most parts of the Gulf, but regulations govern how, where and when fishing can 
occur. For example, regulations limit where trawling can occur, the size of vessels that can be used for 
trawling and/or the time when trawling can occur (Figure 16). Consequently, in recent years trawl-
ing has been confined to central and outer parts of the Gulf, whereas commercial long-lining is more 
widespread (Figures 17a and b). Recreational fishing is mainly concentrated along the coast, with the 
heaviest concentrations of effort in Kawau Bay, Rangitoto Channel, Motuihe Channel, Wilsons Bay, 
around Pakatoa and Tiritiri Matangi islands, and in the Motukahaua and Motuoruhi island groups 
north of Coromandel Harbour (Figure 17c).

The commercial catch of finfish is mainly obtained through bottom trawling, Danish seining and 
bottom long-lining, which together provided between 85% to 90% of the combined catch of snap-
per, gurnard, tarakihi, kahawai, rig, trevally and John Dory in the 2007/08 to 2009/10 fishing sea-
sons. A smaller proportion of the fish catch is obtained by set netting, which is mainly used to target 
parore, flatfish and mullet.

Fish stocks in New Zealand are managed in areas called Quota Management Areas (QMAs) that 
are broken down into smaller units called statistical areas, which are used for reporting purposes. 
The Hauraki Gulf Marine Park covers fisheries’ statistical areas 005, 006, 007 and parts of 003, 004, 
008 and 009. This report uses data provided by MFish from the inshore statistical areas of 005, 006 
and 007 to establish the main commercial inshore species within the Hauraki Gulf Marine Park. Sta-
tistical area 008 covers the inshore waters to the east of Aotea (Great Barrier Island) and Coromandel 
Peninsula, but it includes much deeper waters also and therefore deepwater fisheries. 

Overall, around 75 different finfish species are commercially caught in the Gulf. Of these, snap-
per is the main commercial species in terms of the weight of the reported catch, and it is the most 
targeted species for commercial vessels too. In terms of their landed weight, the other important 
species caught within the Gulf include jack mackerel, pilchard, John Dory, gurnard, kahawai, flatfish, 
tarakihi, trevally, yellow-bellied flounder and leatherjackets (Figure 18 - note that deepwater species 
caught within statistical area 008 were not included in this figure).

Key commercially-fished invertebrates include crayfish, kina and scallops, with annual catches of 
crayfish varying from c. 100 to 116 tonnes between the 2007/08 and 2009/10 fishing seasons, kina 
varying from c. 105 to 111 tonnes, and scallops varying from c. 33.3 to 71.4 tonnes (meat weight) (data 
provided by MFish).
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Figure 16: Areas where trawling and Danish seining is either prohibited or limits apply  

to the size of vessel, or times when trawling and Danish seining can occur.

Figure 17: Spatial distribution of: (a) trawl (combined number of bottom and mid-water trawls between January 2008  

and 31 December 2010); (b) bottom long-line (number of sets between January 2008 and 31 December 2010); and  

(c) recreational (vessels per km) fishing effort in the Hauraki Gulf. Data obtained from MFish based on reported  

fishing returns data and aerial survey of recreational fishing (see Hartill et al. (2007) and Hartill et al. (2007b)).

A. B.
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4.1.2 Indicators of fisheries’ sustainability

Sustainability indicators for the top 15 inshore finfish species caught in the Hauraki Gulf (by catch 
weight) are presented in Table 2 (below). Depending on the species, these indicators are assessed in 
relation to:
1. quota management areas, which are much larger than the Hauraki Gulf; or
2. for north-eastern New Zealand, Hauraki Gulf and Bay of Plenty substocks, which are contained 

within or include parts of the Hauraki Gulf.

The status of fisheries and stocks is characterised by MFish in the following way:
 – Overfishing: If average fishing mortality is higher than the rate that will produce the MSY (or 

another appropriate target), overfishing is deemed to be occurring. Such stocks will ultimately 
be depleted below the biomass that produces the MSY. 

 – Depleted: If stock levels reach less than 50% of the biomass that will produce the MSY, or 20% 
of unfished stock levels (whichever is higher), they are depleted (or overfished) and in need of 
rebuilding.

 – Collapsed: If stock levels reach less than 25% of the biomass that will produce the MSY, or 10% 
of unfished stock levels (whichever is higher), they have collapsed.
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Of the 15 key species listed:
 – Two (snapper and kahawai) are at or above target levels and not considered to be depleted  

or at risk of collapse.
 – Another three species (pilchard, baracoutta and grey mullet) are not considered to be at risk 

of collapse, but not enough is known about the stocks to assess whether they are at or above 
target levels, or depleted.

 – Overfishing of two species (tarakihi and trevally) is about as likely as not to be occurring, but 
can’t be confirmed either way. Not enough is known about these stocks to assess whether  
they are at or above target levels, or depleted. The tarakihi stock is not considered to be at  
risk of collapse.

 – For the remaining eight species the status of the stocks is unknown, because an appropriate 
quantitative analysis has not been undertaken or because the analyses that have been carried 
out have not been definitive enough to assess their status (jack mackerel, John Dory, gurnard, 
flatfish, yellow-bellied flounder, leatherjacket, rig and parore).

Figure 18: Total commercial catch of the key inshore finfish species caught in the fisheries’  

statistical reporting areas 005, 006, 007 and 008 (i.e. the shaded areas shown on the map).
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Species name
Last  
assessed

Quota 
management  
areas or  
substocks

At or  
above 
target 
levels? Overfishing? Depleted? Collapsed? Comments

Snapper 2000 SNA1 ✓ ? ✓✓ ✓✓ Modelling carried out at the last assessment 
indicated that the recruited biomass of the 
Hauraki Gulf/Bay of Plenty stock was less than that 
required to produce the maximum sustainable 
yield (MSY), but it was expected to exceed the 
BMSY by the end of a 20-year projection period.

Jack mackerel None JMA1 ? ? ? ? It is not known whether catches at the 
level of the current TACCs or recent catch 
levels are sustainable in the long term.

Pilchard None PIL1 ? ✓✓ ? ✓✓ There have been no stock assessments of New 
Zealand pilchard and no estimates of current 
biomass are available. It is not known if the 
current catches or TACCs are sustainable.

John Dory 2010 JDO1E and 
JDOBoP

? ? ? ? Recent catch levels and the current TACC are 
likely to be sustainable at least in the short term, 
but it is not known if they are sustainable in the 
long term. The north-eastern substock appears to 
have cyclical variations in catch rates, probably in 
response to recruitment variation, and the current 
trend is downward. Catch rates in the Bay of 
Plenty substock have displayed a declining trend 
since 1989 and are likely to continue to decline.

Gurnard 2010 GUR1E and 
GURBoP

? ? ? ? Catch rates cycle in a manner that is consistent 
with a short-lived species with variable recruitment. 
In recent years, catch per unit effort (CPUE) in the 
north-east substock increased over six consecutive 
years, to peak in 2004/05 and subsequently 
declined. It is not possible to predict how the stocks 
are going to respond in the next few years, but 
modellers believe that current catches are unlikely 
to affect the long-term viability of the stock.

Kahawai 2009 KAH1 ✓✓ ✓✓ ✓✓ ✓✓✓ Assessments carried out in 2008 predicted that 
biomass in KAH1 fisheries management area 
(including the Hauraki Gulf substock) would increase 
over the next five years. It is unlikely that the stock 
will decline below the biomass that produces 
the MSY at currently assumed catch levels.

Flatfish 2008 Hauraki Gulf ? ? ? ? Flatfish is a combined grouping of eight species. 
The Hauraki Gulf is an important fishing ground 
for two of these: yellow-bellied flounder and sand 
flounder. Fishers often report these species under 
the generic flatfish code, even though they also 
have their own species-specific codes. See below 
for further comments on yellow-bellied flounder.

Tarakihi 2009 TAR1 East ? x ? ✓✓ CPUE indices for the three substocks within TAR 1 
were calculated using data through to the end of 
the 2006-07 fishing year. The indices remain stable 
suggesting that current catches and the TACC for TAR 
1 are sustainable. In 2002 the Inshore WG concluded 
that TAR 1 was likely to be above BMSY. There is no 
evidence from the CPUE analyses to suggest any 
major changes in abundance since this time.

Table 2: Status of finfish stocks reported MFish 2010 Stock Status Table (17 December 2010), with comments  

obtained from the 2010 Plenary Report (MFish 2010). Ticks indicate a favourable status, while crosses indicate  

an unfavourable status. The number of ticks or crosses indicates the degree to which the status is favourable  

or unfavourable. Question marks indicate that the stock status is unknown, because an appropriate quantitative  

analysis has not been undertaken or analyses were not definitive. Note that the extent of quota management  

areas vary between species, but are generally larger than the Hauraki Gulf.
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Species name
Last  
assessed

Quota 
management  
areas or  
substocks

At or  
above 
target 
levels? Overfishing? Depleted? Collapsed? Comments

Trevally 2006 TRE1 ? x ? ? Recent catches reported for TRE1 fisheries The 
assessment for TRE 1 undertaken in 2006 was not 
accepted by the Pelagic Working Group due to the 
lack of a reliable abundance index. Recent catches 
reported for TRE 1 are less than the estimated 
maximum constant yield (MCY) levels and below 
the TACC. Reduced proportions of older age classes 
in the single bottom trawl catch between 1999-00 
and 2006-07 combined with the strong drops in 
landings in 2006-07 and 2007-08 may indicate that 
stock abundance is declining at current catch levels.

Yellow-
bellied 
flounder

2008 Hauraki Gulf ? ? ? ? Catch rates have been increasing in the Hauraki 
Gulf from a low in 2001/02 to a level well 
above the long-term mean in 2007/08. 

Leatherjacket None LEA1 ? ? ? ? There are no estimates of reference or 
current biomass. It is not known whether 
the leatherjacket stocks are at, above or 
below a level that can produce the MSY.

Rig None SPO1 ? ? ? ? Since 1989/90, catch rates have increased at 
Thames and decreased in other east-coast areas 
within SPO1. Patterns in relative abundance 
suggest that recent catch levels are probably 
sustainable in the short term, but it is unknown 
whether the current TACC is sustainable.

Baracoutta None BAR1 ? ? ? ✓✓ Estimates of current and reference biomass are not 
available for any baracoutta stocks and therefore 
it is not known if current TACCs and recent catches 
are sustainable or whether they are at levels which 
will allow the stocks to move towards a size that will 
support the MSY. However, in the last seven years, 
catches have been below the estimated maximum 
constant yield in BAR1, which suggests that the 
current catch levels in that stock are sustainable.

Grey mullet 2007 GMU1 ? ? ? ✓✓ The Hauraki Gulf substock makes a relatively 
minor contribution to catches in the GMU1 
fisheries management area. Catch rates have 
fluctuated in this substock since 1990, but 
have not displayed consistent trends. Harbours 
and embayments appear to contain relatively 
distinct sub-populations of grey mullet.

Parore None PAR1 ? ? ? ? Estimates of current and reference biomass 
are not available. It is not known if recent 
catch levels or TACs are sustainable. 

4.1.3 Snapper

Snapper are the dominant fish in northern New Zealand and inshore communities and occupy a 
wide range of habitats including rocky reefs and areas of sand and mud bottom. They are most 
abundant in 15 to 60 m water depth, but can also be found in depths of about 200 m (Ministry of 
Fisheries Science 2010). Snapper are generalist predators that primarily feed on small, soft-bodied 
invertebrate prey, but larger and harder-shelled animals (fish, molluscs, crabs and hermit crabs) are 
eaten in increasing quantities as snapper expand in size. Feeding does not appear to be highly selec-
tive: rather, snapper appear to feed on whatever is available (Coleman 1972). Research carried out in 
the Hauraki Gulf suggests that snapper (and crayfish) may influence primary productivity on reef 
habitats through the consumption of sea urchins (Evechinus chloroticus), whose grazing prevents 
kelp from becoming established and growing (Babcock et al. 1999, Shears and Babcock 2002). Con-
sequently, kelp-free zones called reef or urchin barrens tend to be more prevalent in areas where 
fishing is allowed, and less prevalent in protected areas such as marine reserves (Babcock et al. 1999, 
Shears and Babcock 2002). Scientific information on the broader ecological role of snapper in other 
habitats is limited.
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7. Theoretical biomass that would occur if all harvesting ceased.

The Hauraki Gulf is a nationally significant area in terms of high snapper abundance. Snapper is 
the most targeted commercial species and produces the greatest yield (by weight) of any species 
in the Gulf. Between June 2007 and June 2010 annual national export earnings from snapper are 
estimated to have ranged from $29.7M to $36.4M (Ministry of Fisheries 2010). Snapper are also New 
Zealand’s most sought-after recreational, saltwater fish (Bradford 1999). Consequently, fishing has 
had a major adverse effect on snapper populations.

Fish were a major component of the Mäori diet and annual harvests of thousands of tons of snap-
per were potentially caught in pre-European New Zealand (Leach 2006, Parsons et al. 2009). After 
the arrival of Europeans, a commercial snapper fishery was initially developed using hand-lining and 
netting from small sailboats, and progressed to more efficient fishing methods, with beam trawl-
ing from c. 1899, long-lines from c. 1912, steam trawlers from c. 1915, Danish seiners from c. 1923 and 
pair trawling throughout the 1970s and 1980s, when annual catches peaked (Parsons et al. 2009). 
The Hauraki Gulf/Bay of Plenty substock declined through to the mid-1980s, until the quota man-
agement system was introduced. In 1995, snapper biomass estimates from a fisheries’ tagging pro-
gramme indicated that the Hauraki Gulf/Bay of Plenty substock contained 29,115 to 35,249 tonnes 
of snapper (depending on assumptions used to obtain the estimates), which suggested that the 
substock had been reduced to 10.4% to 12.6% of the “virgin”7 snapper biomass of 279.2 kilotonnes 
(kt) (Ministry of Fisheries Science 2010). 

Limiting catch levels through the quota management system finally halted the decline of snap-
per. Modelling carried out in 1999 indicated that the current TACs would allow the Hauraki Gulf/Bay 
of Plenty snapper substock to rebuild to levels above the biomass required to produce the MSY over a 
20-year period, with a 100% probability. In the base-case model, the biomass required to produce the 
MSY was estimated to be c. 23% of the virgin snapper biomass, and the biomass predicted for 2020 
was around 40% of the virgin biomass (Ministry of Fisheries, Science 2010). The accuracy of those 
predictions has not been verified by a subsequent stock assessment, with the last empirical estimate 
of biomass being obtained in 1995. The next stock assessment is scheduled for 2012.

Figure 19: Predicted change in the Hauraki Gulf/Bay of Plenty snapper stock biomass (+ 90% confidence intervals)  

over time. The biomass estimated to produce the maximum sustainable yield (64 kt) is indicated by the  

black horizontal line, and biomass estimates from the two tagging programmes are plotted (solid  

diamonds) with their assumed 90% confidence intervals (hollow diamonds). The dotted blue line  

indicates the virgin biomass (adapted from Ministry of Fisheries, Science 2010).
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Information obtained from marine reserves in the Hauraki Gulf is generally consistent with the pre-
dictions obtained from the fisheries assessments, except that localised depletion around marine 
reserves tends to be higher than fisheries models predict for the whole Hauraki Gulf/Bay of Plenty 
snapper stock. Willis et al. (2003) found that average densities of harvestable snapper were 14 times 
higher in the Cape Rodney to Okakari Point and Te Whanganui-a-Hei (Hahei) marine reserves, as well 
as in the Tawharanui Marine Park, than in surrounding fished areas (i.e. densities of unprotected pop-
ulations were 93% lower than protected populations). Between 1997 and 2002, seasonal (November 
to May) fishing-related mortality of legally harvestable snapper around these reserves exceeded 
70%, of the population and reached as high as 96% (Willis and Millar 2005).

Between 2000 and 2007 the mean densities of legally harvestable snapper around the Cape 
Rodney to Okakari Point Marine Reserve have varied from 1% to 14% of densities inside the reserve 
(Sivaguru 2007). Similarly, between 2000 and 2010 the mean density of legally harvestable snapper 
around the Te Whanganui-a-Hei (Hahei) Marine Reserve varied from 0% to 28% of mean densities 
within the reserve (Haggitt et al. 2010). In contrast, densities of undersized snapper outside these 
reserves frequently exceeded mean densities inside the reserves.  

Consequently, the characteristics of the fished and unfished populations in the Gulf differ sub-
stantially, with the fished populations being comprised of few, mainly young snapper that are below 
or near the legal size limit, and protected populations containing large numbers of older snapper 
with a high proportion of large fish above the legal size (e.g. see Figure 20, Sivaguru 2007, Haggitt et 
al. 2010). This is reflected in the larger mean size of snapper in protected areas. Mean snapper size 
ranged from 289 mm to 404 mm in the Cape Rodney to Okakari Point Marine Reserve (cf. 148 mm 
to 242 mm outside) between spring 2000 and autumn 2007, and 233 mm to 323 mm in the Hahei 
Marine Reserve (cf. 144 mm to 290 mm outside) between spring 2000 and autumn 2010. 

Overall, fisheries and marine reserves’ monitoring data suggests that fishing has depleted snap-
per populations by more than 80% in the Hauraki Gulf and Bay of Plenty, and that the greatest 
impact has been on older, larger fish. Populations are expected to rebuild with current catch levels 
and catch limits, to reach the biomass targets set under the Fisheries Act 1996. Management at 
those target levels would produce the MSY, but set standing stock levels at about 77% below the 
unfished biomass, using the current default targets.

Figure 20: Comparison of snapper size and abundance: (a) inside and outside the Cape Rodney to  

Okakari Point Marine Reserve in 2007 (data from Sivaguru 2007); and (b) inside and outside the  

Te Whanganui-a-Hei (Hahei) Marine Reserve in 2010 (data from Haggitt et al. 2010). 

 A.

 B.
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4.1.4 Crayfish

The common New Zealand crayfish, Jasus edwardsii, is actually a relatively slow-growing and long-
lived spiny lobster. Jasus edwardsii are one of the largest and most conspicuous mobile invertebrates 
on reefs in the central and outer Hauraki Gulf. In protected areas they can occur in very high densi-
ties (Haggitt et al. 2010), particularly when they cluster into seasonal aggregations that may con-
tain hundreds of individuals (Kelly et al. 1999, Figure 7). They are generalist feeders that prey on a 
wide range of invertebrates, as well as consuming fish and algae (Kelly and McKoy, unpublished 
data). Feeding rates vary throughout the year in relation to moulting and reproductive cycles, with 
prolonged periods of non-feeding during the mating and moulting seasons, being punctuated by 
periods of extremely high consumption (Kelly et al. 1999). Jasus edwardsii and predatory fish such 
as snapper have a positive effect on kelp forest cover and primary productivity in reef habitats by 
consuming sea urchins (Evechinus chloroticus). Sea urchin grazing prevents kelp from becoming 
established and growing, leading to the formation of reef or urchin barrens. These are open areas 
of pink, coralline algae-covered reef, which are devoid of large brown seaweeds. Consequently, kelp-
free urchin barrens tend to be more prevalent in areas where fishing is allowed and less prevalent 
in protected areas such as marine reserves (Babcock et al. 1999, Shears and Babcock 2002). Crayfish 
forage also beyond the reef, where they prey on shellfish and other animals living in sandy habitats. 
Experiments suggest that they play an important role in the survivorship of adult bivalve popula-
tions on the sandflats adjacent to reef systems (Langlois et al. 2006).

Crayfish are a highly prized and high value species. Consequently, fishing has had a major effect 
on crayfish populations. In 2002, the “vulnerable biomass” of crayfish, in the CRA2 fishery area was 
estimated to be around 20% of 1945 levels, and was expected to remain at roughly that level through 
to 2007. However, there was a considerable amount of uncertainty associated with this prediction 
(Ministry of Fisheries, Science 2010), and biomass has since declined (Alicia McKinnon, pers. comm.). 
Best available information suggests the CRA 2 fishery is still above the statutory target level, and 
therefore, the total allowable catch has not been altered since 1997. 

Density estimates have also been obtained from marine reserve surveys. Between 2000 and 
2009, the mean density of lobsters in fished areas outside the Cape Rodney to Okakari Point Marine 
Reserve has fluctuated between 6% and 28% within the reserve, while mean densities outside the Te 
Whanganui-a-Hei Marine Reserve have fluctuated between 5% and 15% of those inside. 

Marine reserve monitoring from the Gulf and elsewhere (Kelly et al. 2000) indicates also that 
the composition of lobster populations has been substantially altered by fishing (Figure 22). Reserve 
populations are dominated by lobsters above the legal size limit, with relatively high numbers of 
old and large animals. In contrast, fished populations are dominated by sub-legal animals. Large 
male and female lobsters have been shown to make a disproportionate contribution to reproduc-
tion by producing more sperm and eggs, mating more frequently and defending access to favourable 
mates (MacDiarmid 1989, MacDiarmid and Butler 1999). Large lobsters also display different behav-
iours to small-sized ones. For instance, large lobsters frequently forage for extended periods on off-
shore sandflats, where they form defensive aggregations for mutual protection during the daytime 
(Kelly et al. 1999). In contrast, most sub-legal lobsters in the Hauraki Gulf appear to remain within  
reef habitat.  

Overall, fisheries and marine reserves’ monitoring data suggests that fishing has reduced lobster 
populations by 80% or more in the Hauraki Gulf and Bay of Plenty, and that fishing has had the great-
est impact on old, large crayfish. Populations are not expected to increase with current catch levels. 
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Figure 21: Predictions of the vulnerable biomass of crayfish, for the autumn-winter (top) and spring-summer  

(bottom) seasons, in the CRA2 fishery area. For each year, the horizontal line represents the median, the box  

spans the 25th and 75th percentiles and the dashed whiskers span the 5th and 95th percentiles.

 Figure 22: Comparison of lobster size and abundance between protected and non-protected areas. Data is  

presented from: (a) Cape Rodney to Okakari Point Marine Reserve in 20091; (b) Te Whanganui-a-Hei Marine Reserve  

in 20092; and (c) Tawharanui Marine Park in 20091. Note that the patterns in the Cape Rodney to Okakari Point Marine 

Reserve in 2009 and Te Whanganui-a-Hei Marine Reserve are also consistent with those reported from other years.

A. Lobsters inside and outside Cape Rodney to Okakari Point Marine Reserve in 2009

B. Lobsters inside and outside Te Whanganui-a-Hei Marine Reserve in 2009

C. Lobsters inside and outside the Tawharanui Marine Park in 2009

1 Data from Haggitt and Mead (2009a) 
2 Data from Haggitt and Mead (2009b)
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Figure 23: Daytime aggregation of large male lobsters in a sandy area that is remote from reef cover.  

(Photo courtesy of Dr Shane Kelly, Coast and Catchment Ltd.)

4.1.5 Cockles

Cockles (Austrovenus stutchburyi) are filter-feeding bivalves which are among the most numerous 
of shellfish in the sheltered shores of harbours and estuaries, with densities as high as 4,500 per 
m2 having been reported in some areas (MFish, Science 2010). Cockles burrow to 25 mm or so, and 
flourish between low and mid-tide where sediments contain less than 50% mud (Stephenson 1981). 
Maturity appears to mainly be a function of size rather than age, and occurs at c. 18 mm shell length 
(MFish, Science 2010). However, cockles may live for up to 20 years (Owen 1992). Cockles are a major 
part of the diet for a range of different animals, including mud whelks (Cominella glandiformis), sand 
flounder (Rhombolsolea plebeia) and pied oystercatchers (Haematopus finschii) (Jones and Marsden 
2005). They are regarded as “ecosystem engineers” that play an important role in the exchange of 
energy and nutrients, between the seabed and within the water column, and in the composition of 
seabed communities (Thrush et al. 2006). Cockles have a major influence on productivity and nutri-
ent dynamics in estuaries due to their size, wide spread and high abundance, and their role in mixing 
the upper 2 to 3 cm of the sediment (Sandwell et al. 2009).

Cockles are not commercially harvested in the Hauraki Gulf, but they do support recreational and 
customary fisheries. Consequently, MFish has intermittently monitored cockle abundance and size 
at 14 sites in the Hauraki Gulf since 1998 (Figure 24a). At most sites the overall abundance of cock-
les has fluctuated over time, without showing obvious increasing or decreasing trends (Figure 25).  
However, clear trends in overall abundance are apparent at two sites:

 – a 36% reduction in overall cockle abundance in Whangateau Harbour occurred between  
2004 and 2010; and

 – overall cockle populations declined at Umupuia between 1998 and 2007, and subsequently 
increased between 2007 and 2010 due to an influx of small cockles.

Three Gulf sites were included in the most recent survey in 2009. Statistically significant declines 
in the number of harvestable cockles (> 30 mm) were detected at the Whangateau Harbour and 
Umupuia sites between 2006 and 2009, but no change occurred at Okoromai Bay on Whangapoua 
Peninsula. High levels of cockle harvesting has previously been reported in Whangateau Harbour 
(Kearney 1999), but mass mortalities of cockles have also contributed to recent declines (see Section 
4.7). A low proportion of harvestable cockles in both Whangateau Harbour and at Umupuia was also 
concerning, with only 1% to 2% of the population consisting of cockles with > 30 mm shell width.
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Community shellfish monitoring is carried out also by a variety of schools, iwi, training organisations 
and care groups at 19 sites in the Hauraki Gulf (Figure 24b). In most cases monitoring has not been 
occurring for long enough to obtain reliable information on trends. The exceptions are:

 – Whangateau Harbour, where 2009 and 2010 cockle densities at the Lews Bay site were around 
50% lower than those recorded in 2004. In contrast, densities have remained relatively stable  
at the Omaha causeway site.

 – Cheltenham Beach, where cockle densities displayed a continuous decline between 1995 and 
2003, then stabilised at low levels.

MFish has responded to local community concerns about over-harvesting and mass mortalities of 
cockles (in the case of Whangateau Harbour), by banning shellfish gathering at five sites in the Hau-
raki Gulf. These include permanent bans on harvesting at Eastern Beach and Cheltenham Beach, 
temporary bans at Umupuia and Whangateau Harbour, and a seasonal ban at Cockle Bay (see  
Figure 24a).  

Overall, this data suggests that, in recent years, cockle abundance has been relative stable at 
most of the sites in the Hauraki Gulf which are (or were) susceptible to harvesting and also moni-
tored by MFish or community groups. The exceptions are Umupuia and Whangateau Harbour where 
relatively large declines in cockle abundance have occurred, and there is a very low proportion of 
cockles of harvestable size. Similar declines have been reported at Cheltenham Beach too

Figure 24: Sites that have been: (a) intermittently monitored by MFish and  

(b) community groups in the Hauraki Gulf. Beaches where shellfish harvesting  

has been banned are also indicated in (a).

A. B.
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Figure 25: Temporal variation in the relative abundance of cockles at MFish's  

monitoring sites. Note that shellfish harvesting is temporarily or permanently  

banned at Cheltenham Beach, Umupuia, Whangateau Harbour and Cockle Bay.

4.1.6 Ecosystem indicators

A variety of indicators of ecosystem effects has been tested in relation to MFish’s trawl survey data 
collected from the Hauraki Gulf between 1965 and 2000 (Tuck et al. 2009). The indicators can be 
broadly divided into different five categories: 
1. rare and threatened species;
2. species diversity;
3. taxonomic diversity;
4. habits and food chains; and
5. size and productivity.

Trends in each indicator were assessed for 11 areas in the Gulf (Figure 26). Statistically significant 
trends were most frequently detected in the Firth of Thames, and these tended to suggest that 
adverse changes were occurring in relation to indicators of rare and threatened species, species’ 
diversity, and size and productivity (see Table 3). Statistically significant trends in the indicators of size 
and productivity also tended to be negative in central parts of the Gulf (eight negative responses), 
although two positive trends were detected as well. Indicators in the other areas were mostly stable 
with relatively few significant trends revealed. Tuck et al. (2009) concluded that species-based meas-
ures of diversity (Pielou’s evenness, Shannon-Weiner index, species’ richness, and Hill’s N1 and N2) 
were the most useful fisheries indicators because they tended to be correlated with fishing intensity. 
However, it is important to note that causality has not been verified and that the ecological signifi-
cance of these changes is unknown.

Overall, fisheries ecosystem indicators suggest that the abundance of rare and threatened spe-
cies, species diversity, and the size and productivity of fish declined in the Firth of Thames between 
1964 and 2000. Negative trends in indicators of fish size and productivity were also detected in the 
central Gulf and in inshore strata between Kawau and Waiheke islands over the same period.
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Figure 26: Areas used to examine trends in ecosystem indicators for fisheries,  

using MFish’s trawl survey data collected between 1965 and 2000
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Table 3: Statistically significant trends in ecosystem indicators for fisheries, based on MFish’s  

trawl survey data collected between 1965 and 2000. Negative trends are highlighted in red  

and positive trends are highlight in green.

Inshore Kawau to 
Waiheke islands Firth of Thames Central Gulf

Deep 
Shelf

Inshore 
Northern 

Coromandel Pakiri

Sub-Areas 1284 1386 1149 1268 1887 2229 1219 4492 1518 9292 1449

Rare and 
threatened  
species

Proportion of threatened 
species (IUCN Red 
List Species)

– –

Low-resilience species – – –

Hill’s N1 diversity – –

Hill’s N2 diversity – –

Species’ diversity Species’ richness

Margarlef’s diversity

Shannon-Weiner’s diversity – – –

Pielou's diversity – –

Taxonomic  
diversity

Average taxonomic 
distinctness

+ +

Variation in taxonomic 
distinctness

+ +

Fish habits and 
food chains

Demersal:Total fish ratio + + + + – +

Pisciverous:Total fish ratio

W statistic +

Mean trophic level

Size and 
productivity

Median length –

95th percentile of length – – – –

Proportion > 30 cm – – –

Biomass spectra curvature – – – + – +

Biomass spectra x vertex – – –

Biomass spectra y vertex + +

Size spectra intercept –

Size spectra slope – – – – –
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4.1.7 Benthic disturbance

Bottom trawling and dredging are relatively indiscriminate methods of fishing that capture, disturb 
and injure both target and non-target species. They also affect habitat quality by removing emer-
gent biota and other physical features, and evening out seabed sediments. Such disturbance has 
important consequences for sea-floor biodiversity. Studies carried out in the Hauraki Gulf, and else-
where, indicate that diversity is strongly related to local variation in sediment characteristics and the 
presence of emergent features (see Thrush et al. 2001 and references within). Trawling and dredging 
therefore have both direct and indirect effects on target and non-target species.

Bottom trawling is one of the most commonly used methods of catching fish in the Hauraki Gulf, 
accounting for around 30 to 40 % of the total catch (Ministry of Fisheries 2009, Hauraki Gulf Forum 
2010b) and occurring over a wide area (Figure 17a). All trawling and Danish seining is prohibited 
south of a line running approximately between Kawau Island and Colville Bay, and from a number of 
inshore zones on the eastern side of Coromandel Peninsula. Trawling is also prohibited in a number 
of cable zones in the Hauraki Gulf (see Figure 16). 

Virtually nothing is known about seabed ecology in the areas subject to trawling in the Gulf, or 
how they are affected. However, the areas targeted by commercial trawlers contain a variety of dif-
ferent substrates and are likely to also contain (or to have, once contained) diverse seabed communi-
ties, which are probably sensitive to trawling disturbance.  

The commercial scallop fishery in the Coromandel area started in the 1970s and was introduced 
into the quota management system in 2002. Dredges are used for all of the commercial scallop 
harvesting carried out in the Gulf. Since 1992, controls have been in place which limit dredge size, 
the fishing season, the minimum size of scallops, total catch, hours of fishing and fishing days. Until 
1994 the minimum legal size of scallops for the commercial fishery was 100 mm shell width, but this 
was reduced to 90 mm shell width in a package of measures that were primarily designed to reduce 
incidental mortality (pers. comm. Martin Cryer, MFish). The package of measures also included the 
implementation of voluntary closed areas and a reduction in catch limits (Tuck et al. 2006).  

The total area fished by the commercial scallop industry has ranged from 350 to 450 km2 for most 
of its history, but dropped to 200 km2 in 2001 due to low scallop abundance and a downturn in the 
industry, and subsequently decreased again in 2005 (to 100 km2) due to very high scallop abundance. 
Catch and effort landing return (CELR) data and information provided by the industry indicates that 
there has been a change in the spatial pattern of fishing over time, with effort shifting from the 
central Gulf and Aotea (Great Barrier Island) to Mercury Bay and Bay of Plenty areas (Tuck et al. 2006, 
Figure 27). The shift in fishing patterns is largely due to the implementation of voluntary closed areas 
which have reduced conflict between the commercial and amateur fisheries. Amateur harvesters 
dive and dredge for scallops. Telephone surveys indicate that around 10% of the scallops collected 
by amateurs are obtained by dredge (Tuck et al. 2006).

The areas targeted by recreational and commercial fishers contain a variety of benthic habitats, 
but there appears to be very little information on the current or historical ecology of these areas, 
or the actual impacts of scallop dredging in the Gulf (but see Tuck et al. 2006). However, a range of 
non-target species is commonly collected in scallop dredges, including horse mussels, dog cockles, 
starfish, sponges, kelp and turfing algae. As discussed above, large, emergent species like sponges, 
horse mussels and kelp are particularly important because they provide structural complexity in 
otherwise featureless habitats and have a positive influence on biodiversity.  
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4.1.8 Strategic considerations for fishing

1. Fishing impacts affect most, if not all, of the Hauraki Gulf and have a large influence on the 
marine ecosystem.

2. Stock assessments have been carried for few commercially fished species. Consequently,  
the status of the majority of commercial fish stocks in relation to target levels is not known.

3. In the mid 1990s fishing had depleted snapper biomass by more than 87%9 in the Hauraki 
Gulf and Bay of Plenty, with the greatest impact on old, large fish. Modelling suggests that 
the current TAC will allow the Hauraki Gulf snapper stock to rebuild and exceed the biomass10 
estimated to produce the MSY by 2020, with a 100% probability. However, harvesting is 
expected to hold the stock at a level that is 77% below the virgin biomass , if the MSY is used  
as the target for managing this species. The actual biomass of snapper has not been verified 
since 1995, but a stock assessment is scheduled for 2012.

4. Fishing has reduced lobster biomass by 80% or more in the Hauraki Gulf and Bay of Plenty,  
with the greatest impact on old, large crayfish. Populations are not expected to increase with 
current catch levels.

5. In recent years, cockle abundance has been relatively stable at most of the sites that MFish 
monitors in the Hauraki Gulf. The exceptions are Umupuia and Whangateau Harbour where 
relatively large declines in cockle abundance have occurred, and there is a very low proportion 
of cockles of harvestable size. Similar declines have been observed also in the community 
monitoring programme for Cheltenham Beach.

6. Ecosystem indicators suggest that the abundance of rare and threatened fish, fish diversity, 
and the size and productivity of fish declined in the Firth of Thames between 1964 and 2000. 
Negative trends in indicators of fish size and productivity were detected also in the central Gulf 
and in inshore strata between Kawau and Waiheke islands over the same period. However, a 
causal link with fishing has not been verified and the ecological significance of these changes  
is unknown.

7. Large areas of the Gulf are subject to trawler and scallop dredge disturbance, but the ecological 
values, and historical and current state of seabed habitats in the areas affected are largely 
unknown. Research carried out in the Hauraki Gulf, and elsewhere, indicates that seabed 
disturbance by trawlers and dredges can have a significant effect on benthic habitats and 
communities.

8. Historical mussel dredging eliminated most subtidal mussel beds in the Firth of Thames 
and Tamaki Strait. Their removal has almost certainly led to a major loss of ecological and 
biophysical function in the Gulf. This loss may be partially offset by farmed mussels, but it is 
not known if, or how, the delivery of functions and services differs between natural beds and 
farmed systems.

9. Relative to the virgin, or unfished, biomass. 
10. The virgin, or unfished, biomass is the theoretical biomass that would occur if all harvesting ceased.
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Figure 27: Indicative areas fished for scallops in: (a) the 1980s, (b) 1990s, (c) 2000 and (d) 2005. Data was digitised  

from hand-drawn maps in Tuck et al. (2006), as provided by fishers working in the Coromandel scallop fishery.

A. B.

C.  D.
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4.2 Sediment contamination

Human activities generate a variety of toxic heavy metals and organic compounds that are used in 
the coastal environment (e.g. sacrificial zinc anodes and anti-fouling paints) or enter coastal waters 
through spills, run-off and discharges. Contaminants originate from ongoing activities and historical 
activities that can have continuing, long-term environmental consequences. Major spills sometimes 
have immediate and catastrophic effects, but many contaminants slowly accumulate to toxic levels 
over time (typically decades). Many of these contaminants bind to sediments and other particulate 
matter, which settles out and accumulates on the seabed. Elevated contaminant sediment concen-
trations can therefore affect the survival, reproduction and/or behaviour of benthic organisms.

Monitoring and investigations carried out by the former Auckland Regional Council (ARC), Wai-
kato Regional Council and DOC indicate that the main causes of sediment contamination in the Gulf 
are urbanisation (Mills and Williamson 2008, 2009) and historical mine activity (Kim 2007). “Hot-
spots” of sediment contamination are also associated with port activities, marina developments, 
landfills, agrichemicals and industrial discharges. In some cases, contaminant concentrations within 
hotspots are particularly high, but the extent of the affected areas tends to be fairly localised. 

In urban areas the main contaminants that are most elevated (relative to sediment quality guide-
lines) are zinc, copper, lead and polycyclic aromatic hydrocarbons (PAHs). However, a variety of other 
metal and organic contaminants co-occur with these pollutants and potentially compounds their 
effects. New contaminants are constantly emerging and, consequently, researchers are struggling 
to keep pace with the rapidly increasing list. Emerging contaminants, such as endocrine-disrupting 
compounds, are particularly problematic because: biological effects occur at extremely low con-
centrations (which are often below the detection limits of most analytical instruments); guidelines 
are not available; and there is no standard or common method of analysis and monitoring (Bolong  
et al. 2009).

In the Auckland Region, contaminant concentrations are most elevated in the sheltered estuar-
ies and tidal creeks associated with old urban catchments (Figure 28 and Figure 29a, Kelly 2007). In 
these locations, lower threshold effects level (TEL) sediment quality guideline values are frequently 
exceeded for zinc, copper and lead, and less frequently for PAHs (see Table 4 for a description of sedi-
ment quality guidelines). Of the 50 sites in the Hauraki Gulf that are regularly monitored by Auckland 
Council, 21 exceed TEL guideline values for at least one of these contaminants. All of these sites are in 
tidal creeks and estuaries associated with urban catchments. However, higher probable effects level 
(PEL) guidelines are exceeded at only two of Auckland Council’s monitoring sites i.e. the lower tidal 
banks of Meola Creek and Motions Creek. 

Concentrations of copper, lead, mercury and zinc exceed TEL sediment quality guidelines also in 
the south-eastern Firth of Thames, and in particular around the Thames and Waihou River mouth 
due to historical mining (Figure 28 and Figure 29b, Kim 2007). 

The former ARC assessed the response of seabed communities to stormwater contamination 
with a benthic community health model, which is able to link community composition to the con-
centrations of the heavy metals copper, lead and zinc (Anderson et al. 2006, Thrush et al. 2008, 
Hewitt et al. 2009). Originally, 85 sites were included in the model and a subset of these has been 
monitored on a rotational basis since 2002. The ecological health of each site is ranked on a five point 
scale from 1 “Good” to 5 “Degraded”. Degraded sites tend to have fewer rare and large taxa. Rare 
species dominate the community structure and make a substantial contribution to overall biodiver-
sity. They are also important in maintaining the stability and resilience of ecosystems, especially in 
changing environments. Large taxa can make a disproportionately high contribution to ecosystem 
functions such as the deep mixing of sediments, modification of water flows along the seabed and 
providing sizeable packages of food for fish and other larger consumers. They are also likely to affect 
oxygen, carbon and nutrient exchanges between the water column and the sea floor, leading to 
effects that are beyond simple changes in composition (Hewitt et al. 2009). Importantly, the benthic 
health model indicates that benthic community responses become apparent at sediment concen-
trations below existing sediment quality guideline values.

The most recent rankings for each site are provided in Figure 30. Of the 85 sites monitored:
 – 10 sites were ranked 1 (i.e. had good health);
 – 8 sites were ranked 2;
 – 22 sites were ranked 3;
 – 32 sites were ranked 4; and
 – 13 sites were ranked 5 (i.e. had degraded health).
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Spatial patterns of benthic health generally mirror patterns of stormwater contamination, i.e. 
ecological health is worst in tidal creeks and estuaries which are associated with older, fully devel-
oped urban catchments. Comparable analyses have not been carried out in the Waikato Region.

4.2.1 Strategic considerations for sediment contamination

1. Sediment contamination affects a relatively small area on the Gulf-wide scale (although 
the actual area affected is still likely to be > 60 km2). However, the affected areas are locally 
important and the functions and services they provide increase their area of influence  
(e.g. filtration and trapping of sediments and contaminants close to source).

2. Contaminant levels are moderately elevated in some places and have a measurable impact  
on the ecological health of seabed communities. 

3. Significant effort is being directed at addressing sediment contamination, including:
a. containing the spread of activities that generate contaminants by setting spatial limits  

on urban development;
b. requiring stormwater treatment for high-risk industrial sites and new urban developments;
c. developing and implementing integrated catchment management plans, which identify 

options for stormwater management;
d. where appropriate and practicable, retrofitting stormwater treatment in developed  

urban areas;
e. implementing community education on stormwater issues; and
f. ensuring case-by-case management of legacy contaminant issues.

4. The above responses are not expected to remediate areas affected by urban and legacy 
contamination but may slow accumulation and prevent the degradation of areas with  
clean sediments.

Figure 28: Extent of the coastal marine area where low-level (TEL) and high-level (PEL) sediment quality  

guideline values are known to be exceeded by one or more metal contaminants (excluding arsenic which  

tends to be naturally elevated). Locations of the two main sources of metal contaminants in the  

Hauraki Gulf, i.e. urban activities and mines, are indicated.
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Figure 29: Monitoring or investigation sites where low-level (TEL) and high-level (PEL) sediment quality guideline  

values are known to be exceeded by one or more metal contaminants (excluding arsenic which tends to be  

naturally elevated). Operational and disused mines are also indicated on Coromandel Peninsula.

 A.

 B.
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Table 4: Sediment quality guidelines and background concentrations

Sediment and water quality guidelines are commonly used to assess the potential for contaminant-
related ecological effects. These are usually provided as a set of low and high values. 

 – TEL (Threshold Effect Levels, MacDonald et al. 1996) guideline values provide an early warning of contamination,  
which allows timely management intervention to prevent or minimise adverse environmental effects. TEL guidelines  
are low-level limits that are indicative of contaminant concentrations where biological effects are “rarely” expected  
to occur. O’Connor (2004) defines “rarely” as having an observed frequency of 5 to 8%, leading to a rule of thumb  
that low-level guideline concentrations correspond to a 10% probability of toxicity.

 – PEL (Probable Effect Levels, MacDonald et al. 1996) guideline values indicate that adverse environmental effects  
have a high probability of occurring and management intervention may be required to remediate the problem.  
They are indicative of contaminant concentrations where biological effects are frequently expected to occur.

Parameter Nominal background 
concentration in the 
Auckland Region

TEL Guideline Value PEL Guideline Value

Copper c. 5 mg/kg1 18.7 mg/kg 108.2 mg/kg

Lead c. 5 mg/kg1 30.2 mg/kg 112.2 mg/kg

Mercury Undetermined 0.13 0.70

Zinc c. 35 mg/kg1 124 mg/kg 271 mg/kg

PAH (high molecular weight) Undetermined 655 ug/kg 6676 ug/kg

1. Diffuse Sources Ltd (2004)

Figure 30: Ecological health of benthic communities in relation to stormwater  

contamination. Health is ranked from 1 “Good” (blue) to 5 “Degraded” (red).

4.3 Nutrients

Nutrients are necessary to sustain plant (algae) growth that forms the foundation of the food chain. 
Slight increases in nutrient levels can therefore increase ecosystem productivity, but high nutrient 
levels are detrimental: potentially leading to nuisance phytoplankton and seaweed blooms; reduced 
water clarity; and toxic effects. The Hauraki Gulf is naturally maintained by nutrients that regu-
larly upwell from deep offshore waters, are recycled on the seabed and wash off the land. Humans 
increase nutrient inputs from the land mainly through wastewater discharges, fertiliser application 
and the farming of livestock.
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4.3.1 River-loads of nutrients

The largest riverine contributions of nutrients to the Gulf are likely to come from the Waikato Region, 
which has large catchments with a high degree of intensive, agricultural land use (particularly dairy 
farming). Around 90% of nutrient loads originating from the Waikato Region are discharged into the 
Firth of Thames via the Waihou and Piako rivers (pers. comm. Bill Vant, Water Quality Scientist, Wai-
kato Regional Council). Waihou River is the largest river and is conservatively estimated to contrib-
ute in excess of 1,900 tonnes of nitrogen and 138 tonnes of phosphorus to the Firth of Thames each 
year. Note that the total loads are underestimated because they do not include inputs from a rela-
tively large proportion of the catchment. Loads of both nitrogen and phosphorus in the main stem 
of the Waihou River (i.e. above the point where the Ohinemuri River enters the Waihou) increased 
by a modest amount (c. 1% per year) between 2000 and 2009. In contrast, phosphorus loads in the 
Ohinemuri River stem were significantly reduced by the upgrade of the Waihi Wastewater Treat-
ment Plant (a reduction of 5.8% per annum over the last decade), although it should be noted that 
this stem makes a relatively minor contribution to the overall phosphorus load from Waihou (7.8%) 
(Vant 2011). Flows from the Ohinemuri stem enter Waihou River near Paeroa and the combined flows 
enter the south-eastern corner of the Firth of Thames, near Thames.

Piako River’s flow rate (including the Waitoa stem) is around 22.5% of Waihou River’s, but it con-
tributes the equivalent of approximately 68% of the Waihou River’s total nitrogen and 82% of it's 
phosphorus loads. Nitrogen loads in the upper stem of Piako River (at Paeroa-Tahuna Road Bridge) 
increased at a rate of 3.4% per annum between 2000 and 2009, but total phosphorus concentra-
tions did not display any significant trend. In contrast, annual reductions of 22% for phosphorus and 
1.8% for nitrogen were recorded in the Waitoa stem of the Piako River, due to the upgrade of the 
Waitoa dairy factory. Piako River enters the Firth of Thames near the mouth of the Waihou River. 
Overall, the combined mass flow of nitrogen from Hauraki rivers is estimated to have increased by 
about 1% per year between 2000 and 2009, while phosphorus decreased by about 5% per year dur-
ing the same period (Vant 2011).

The increase in nitrogen concentrations in rivers of the Hauraki Plains is generally consistent with 
increasing trends in dairy cow numbers (see figures for Matamata-Piako, South Waikato and Hauraki 
in Figure 31, and Cameron et al. 2009) and associated changes in farm management practices, such 
as increasing uses of fertiliser and supplementary feeds (Judge and Ledgard 2009). Around 70% of 
the combined mass flow of nitrogen to the southern Firth of Thames is estimated to have come from 
diffused agricultural sources. Point-source discharges are estimated to have contributed around 8% 
of the total mass flow of nitrogen, while “natural” background flows are estimated to contribute 
around 23% of the nitrogen load (Vant 2011).

Figure 31: Trends in dairy cow numbers in six districts that are partially or wholly within the Hauraki Gulf Marine Park. 

Districts in the Auckland Region are shown on the left and those in the Waikato Region are shown on the left.  

Data obtained from the Livestock Improvement Corporation (LIC) (www.lic.co.nz/lic_Publications.cfm).
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The contribution of nutrients from rivers and streams in the Auckland Region is likely to be minor 
relative to inputs from the Hauraki Plains. However, an analysis of water quality data collected from 
17 streams in the Auckland Region from 1986-1993 to 2005 shows that water quality has generally 
improved since the late 1980s/early 1990s (Scarsbrook 2007). Of the 17 sites monitored:

 – 10 sites had stable (n=3) or declining (n=7) ammonia-nitrogen concentrations over the full 
monitoring period. The declining trends were statistically significant at five sites (Figure 32a). 

 – 13 sites had declining nitrate-nitrite-nitrogen trends, and these trends were statistically 
significant at 11 sites (Figure 32b).

 – 16 sites had stable (n=7) or declining (n=9) trends in soluble reactive phosphorus.  
The declining trends were statistically significant at all nine sites (Figure 32c). 

 – All 17 sites had stable (n=2) or declining (n=15) trends in soluble reactive phosphorus.  
The declining trends were statistically significant at all 15 sites (Figure 32d). 

These trends are consistent with the decline in dairy cow numbers in the Auckland Region (see fig-
ures for Rodney, Manukau and Franklin in Figure 31).

Figure 32: Trends in (a) ammonia-N, (b) nitrate-N, (c) soluble reactive phosphorus and (d) total phosphorus  

concentrations at Auckland Council's stream water quality monitoring sites that were sampled at monthly  

intervals from 1986-1995 (depending on the site) to 2005 (Scarsbrook 2008).

 A. Ammonia-N B. Nitrate-N

 C. Soluble Reactive Phosphorus D. Total Phosphorus
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4.3.2 Wastewater inputs

The total nitrogen load from the two largest wastewater treatment plants to discharge into the Hau-
raki Gulf (i.e. Rosedale and Army Bay) was estimated to be around 198 and 39 tonnes respectively in 
2010 (i.e. equivalent to 7.4% of the nitrogen load coming from the upper half of the Hauraki Plains). 
Total nitrogen loads are not measured at the other wastewater treatment plants in the Auckland 
or Waikato regions (Figure 33) but, given the sizes of the populations they service, additional loads 
are likely to be relatively minor. Furthermore, on the eastern side of Coromandel Peninsula, nutrient 
loads from wastewater plants are minimised by using land disposal at six of the eight treatment 
plants. Land disposal is also used at Kawakawa Bay and Omaha within the Auckland Region.

Figure 33: Wastewater treatment plants in the Hauraki Gulf showing whether the discharge is to land or water.

4.3.3 Coastal nutrients

Auckland Council (and its predecessor, ARC) has consistently collected coastal water quality data 
from 20 sites in the Hauraki Gulf over a 17 to 23-year period from 1987-1993 to the present day. An 
analysis of that data carried out in 2008 ranked water quality for each monitoring site (excluding 
Goat Island) based on six indicators of sediment, nutrients and wastewater contamination: total 
suspended solids, nitrate-nitrogen, ammonia-nitrogen, total phosphorus, soluble reactive phospho-
rus and faecal coliforms (Scarsbrook 2008). That data indicated that water quality was very good in 
coastal areas, but quality tends to decline within harbours and estuaries, as concentrations of sus-
pended solids, nutrients and indicators of faecal contamination increase. 

Of the 20 sites monitored by Auckland Council:
 – 18 sites had stable nitrate-nitrogen and ammonia-nitrogen concentrations over the full 

monitoring period, or displayed improving trends. However, few (n=5) of the declining trends 
were statistically significant. The Goat Island site displayed a slight but statistically significant 
upward trend in nitrate-nitrogen concentrations, and Warkworth town basin displayed a slight 
but non-significant upward trend in ammonia-nitrogen concentrations.



70 Tikapa Moana – Hauraki Gulf

 – All 20 sites displayed improving trends in soluble reactive phosphorus and/or total phosphorus 
concentrations. All of these trends were statistically significant for soluble reactive phosphorus, 
while declining trends in total phosphorus were statistically significant at 14 sites. However, 
the Mahurangi Heads, Ti Point, Goat Island and Orewa sites displayed slight but statistically 
significant upward trends in total phosphorus concentrations. 

Comparable long-term data is not available from the Waikato Region, but monthly monitoring was 
carried out at three sites in the southern Firth of Thames between November 2006 and December 
2007. Median concentrations of total phosphorus were in the range of 40 to 60 mg/m3 and of total 
nitrogen were 200 to 400 mg/m3. Concentrations of total phosphorus changed little over the year, 
but total inorganic nitrogen concentrations were more variable. Based on this monitoring, Vant (2011) 
concluded that water quality in the southern Firth of Thames was reasonably good, with no obvious 
grounds for concern.

Figure 34: Water quality rankings of Auckland Council's water quality monitoring sites  

that were sampled at monthly intervals from 1987-1993 to 2007 (Scarsbrook 2008).
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Figure 35: Trends in (a) ammonia-N, (b) nitrate-N, (c) soluble reactive phosphorus and (d) total phosphorus  

concentrations at Auckland Council's coastal water quality monitoring sites that were sampled at  

monthly intervals from 1987-1993 to 2007 (Scarsbrook 2008).

A. Ammonia-N B. Nitrate-N

B. Soluble Reactive Phosphorus C. Total Phosphorus
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4.3.4 Strategic considerations for nutrients

1. The Firth of Thames is enriched with nitrogen relative to historical levels.
2. Historically, oceanic sources of nitrogen are likely to have been the dominant input to the  

Firth of Thames. However, riverine inputs now surpass oceanic ones.
3. Nutrient loads from the Waikato Region dominate inputs to the Gulf and around 90% of these 

originate from the Waihou and Piako rivers. 
4. The two largest wastewater treatment plants in the Gulf (Rosedale and Army Bay) contribute 

less than 7.4% of the nitrogen loads coming from the Waihou and Piako rivers. 
5. Inputs from other rivers in the Auckland Region are likely to be insignificant at the Gulf scale.
6. The mass load of nitrogen from Hauraki rivers is estimated to have increased by about 1% per 

year between 2000 and 2009.
7. The increased nitrogen loads from Waihou and Piako rivers is consistent with an increase  

in dairy cows in the Matamata-Piako and South Waikato districts over a similar period.
8. Nutrient levels in Auckland rivers displayed stable or declining trends between 1986-1993  

and 2005, which is in line with a decline in the number of dairy cows. 
9. Nutrient levels in coastal waters of the Auckland Region have also displayed stable or declining trends.
10. Trends in coastal nutrient levels are not available for the Waikato Region.

4.4 Beach water quality

Wastewater pathogens (disease-causing organisms) primarily enter the coastal environment 
through leakage from septic tanks, overflows and discharges from wastewater networks, contami-
nated stormwater, discharges from wastewater treatment plants, and animal droppings. These 
organisms pose a health hazard when water is used for contact recreation, such as swimming and 
other high-contact water sports. In most cases ill-health effects are minor and short lived, but there 
is potential for contracting more serious diseases, such as hepatitis A, giardiasis, cryptosporidiosis, 
campylobacteriosis and salmonellosis (Ministry for the Environment, Ministry of Health 2002). Con-
tamination of swimming beaches is assessed using Enterococci bacteria as an indicator of the harm-
ful pathogens that can cause illness. 

A variety of beaches in the Auckland and Waikato regions are monitored during summer (Novem-
ber to March/April), in general accordance with the Microbiological Water Quality Guidelines for 
Marine and Freshwater Recreational Areas (Ministry for the Environment, Ministry of Health 2002). 
Monitoring is generally carried out once per week during the summer period but, in the Auckland 
Region, occurs more frequently if high Enterococci counts are detected. The guidelines provide three 
status zones in terms of monitoring and management actions:

Status Enterococci count per 100 ml Management action

Surveillance < 140 Continue weekly monitoring

Alert 140-280 Monitor daily

Action Two consecutive samples > 280 Monitor daily, erect warning signs 
and inform the community that 
a public health problem exists

Enterococci counts of 280 per 100 ml were therefore used as an indicator for the state of the Gulf’s 
beaches.11 Between January 2006 and April 2009 the number of beaches monitored in the Auckland 
Region has varied, mainly due to Rodney District Council ceasing beach monitoring in 2007. However, 
monitoring carried out during that period shows that Enterococci levels regularly exceeded counts of 
280 per 100 ml between 2006 and 2009 (Figure 37). Exceedances occurred mainly on North Shore 
beaches, in Waitematä Harbour and on eastern beaches. Occasional exceedances also occurred at 
Orere Point and in Tryphena Harbour on Aotea (Great Barrier Island). In contrast, Enterococci levels 
on beaches from Whangaparaoa north never exceeded 280 per 100 ml. 

11. Data provided by Auckland Council and included weekly samples as well as subsequent re-samples that were carried out when alert and action 
thresholds were exceeded. Environment Waikato data is from weekly samples collected in January and February 2006 and 2008.
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Bathing beach water quality has remained stable at the 42 Auckland sites that were monitored 
every year between January 2006 and April 2009, with little change in the number of sites exceeding 
Enterococci counts of 280 per 100 ml during each year (14 to 16 sites annually), and no change in the 
proportion of samples exceeding 280 per 100 ml among those sites. 

In the Waikato Region, eight of the 16 sites monitored exceeded the action threshold at least once 
in January-February 2006, with two sites (in Whangamatä and Tairua harbours) exceeding it two to 
three times. In January-February 2008, only two sites (Cooks Bay and Tairua Harbour) exceeded the 
action threshold, both on a single occasion. 

4.4.1 Strategic considerations for bathing beach quality

1. Exceedances of the “action”-level guideline for contact recreation frequently occur in the Gulf.
2. Exceedances occur mainly on urban Auckland and Coromandel Peninsula beaches.
3. Microbiological contamination poses a risk to human health, but is not a significant  

ecological issue.
 

Figure 36: Bathing beach sites that had water samples which exceeded the Ministry for the Environment and  

Ministry of Health’s “action”-level guideline for Enterococci levels between 2006 and 2009. Dot colours show: 

green = no samples exceeded “action” levels; orange = less the 15% of samples exceeded “action” levels;  

and red = more than 15% of samples exceeded “action” levels.

A. 2006 B. 2007
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 Figure 36: Bathing beach sites that had water samples which exceeded the Ministry for the Environment and  

Ministry of Health’s “action”-level guideline for Enterococci levels between 2006 and 2009. Dot colours show: 

green = no samples exceeded “action” levels; orange = less the 15% of samples exceeded “action” levels;  

and red = more than 15% of samples exceeded “action” levels.

C. 2008 D. 2009 (Jan-April)

Figure 37: The (a) number of sites that were monitored every year between 2006 and 2009 and exceeded the  

Ministry for the Environment and Ministry of Health’s “action”-level bathing guidelines for Enterococci levels,  

and (b) mean (+ S.D.) proportion of samples from those sites which exceeded “action” levels.
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4.5 Sediment

Sediment is a serious environmental contaminant that degrades coastal habitats and is toxic to 
many marine organisms (Airoldi 2003, Thrush et al. 2004). Deposited sediment accumulates in shel-
tered estuaries or deep coastal areas, where the energy from waves and currents is too weak to 
remobilise sediments once they settle. In estuaries, thick (> 2 cm deep) deposits of terrigenous sedi-
ment (i.e. sediment eroded from the land) rapidly kill most animals buried beneath them (Norkko et 
al. 2002). Thin deposits (1 to 7 mm) also lead to a reduction in species’ diversity and abundance, even 
in muddy areas where species are expected to have adapted to high sediment loads (Berkenbusch 
et al. 2001). Recovery tends to occur slowly after depositional events and can take in excess of a year 
(Norkko et al. 2002). Suspended sediments also affect marine plants and animals by reducing water 
clarity and light levels, as well as reducing food quality and feeding efficiency. Consequently, the con-
dition and survival rates of marine species frequently decline as suspended sediment concentrations 
increase (e.g. Hewitt et al. 2001, Nichlolls et al. 2003, Ellis et al. 2002, Morrison et al. 2009).

4.5.1 Coastal sedimentation

The most obvious long-term impacts of sedimentation in the coastal environment are the infilling of 
estuaries and the associated expansion of mangroves. Sheltered upper estuary areas are particularly 
susceptible, but these processes can also occur in large, exposed waterways such as southern parts 
of the Firth of Thames (see Section 3.2, Swales et al. 2008). A number of studies have been carried out 
over the past decade that have improved our understanding of sediment generation and accumula-
tion in the coastal environment. These studies have shown that:
1. Sedimentation rates vary among harbours and estuaries and also among locations within 

harbours and estuaries (Swales et al. 2002).
2. Modern sediment accumulation rates on the coast are frequently much greater than natural 

sedimentation rates, particularly following large-scale changes in land-use and land-isturbance 
activities, such as forest clearance and urbanisation (Swales et al. 2002, Jones 2008).

3. After correcting for the effects of rainfall and hill slope, sediment yields from forested and 
developed urban areas are estimated to be 33% and 75% lower than those from pasture, 
respectively (Hicks et al. 2009).

4. Run-off from rural land and forest harvesting can make a significant contribution toward the 
overall amount of sediment deposited in estuaries (Gibbs 2006).

5. Intertidal sedimentation rates (and hence trapping rates) decrease as infilling raises seabed 
levels, which decreases tidal inundation (Swales et al. 2008). Consequently, sediments are likely 
to be dispersed more broadly in infilled estuaries.

4.5.2 Mangroves

Over the past 50 or so years, mangrove cover has increased substantially in many parts of the Hauraki 
Gulf (see Figure 38 for changes in mangrove cover within nine estuaries). This expansion has largely 
been attributed to sedimentation. Mangroves have a preference for soft, muddy, waterlogged sedi-
ments, and readily colonise areas where gradual sediment accretion creates habitats with suita-
ble sediment characteristics and tidal elevation. The level of the substratum must be sufficient to 
expose seedlings to the air for part of the tidal cycle, because very young seedlings are intolerant of 
continuous submersion (Morrisey et al. 2007a). The expansion of mangroves is therefore a natural 
response to the increase in land erosion and sediment run-off caused by human activities. How-
ever, other factors, such as warmer temperatures, elevated nutrient levels and in some cases, hydro-
logical obstructions (e.g. causeways), may also enhance mangrove growth and survival (Morrisey  
et al. 2007a). 
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Estimates obtained from the Ministry for the Environment’s land classification database (LCDB2) 
indicate that in the summer of 2001/02 mangroves covered 2,641 ha in the Auckland Region and 
2,422 ha in the Waikato Region.12 These areas appeared to have remained unchanged from the pre-
vious assessment in the summer of 1996/97, although the spatial resolution of this data was rela-
tively coarse. However, the spread of mangroves continues to cause serious concern among many 
local communities. For example, in Whangamatä, local frustration about the spread of mangroves 
(Figure 39) led to their illegal removal in October 2005 and January 2007. A resource consent was 
subsequently granted by the Environment Court, which allowed the limited removal of mangrove 
seedlings. Waikato Regional Council is currently working with the community to improve the envi-
ronmental management of Whangamatä Harbour, and further options for mangrove management 
are considered in the Whangamatä Harbour and Catchment Management plans, which have now 
been completed.

Figure 38: Changes in the percentage of area covered by mangrove forest in nine Hauraki Gulf  

estuaries. Data was collated from Jones (2008) and Morrisey et al. (2007a).

12. These estimates are based on spectral analysis of satellite images using a minimum mapping unit of 1 ha.
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Figure 39: Historical mangrove distribution in Whangamatä Harbour showing the increase in cover (green areas)  

from (a) 1944 to (b) 1965, (c) 1978 and (d) 2002. The red outline indicates mangrove extent in 2002.

 A. 1944 B. 1965

 C. 1978 D. 2002
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4.5.3 Total suspended solids

Auckland Council (and its predecessor, ARC) has collected coastal water quality data from 20 sites 
in the Hauraki Gulf over a 17 to 23-year period from 1987-1993 (depending on the site) to the present 
day. Of the 20 water quality sites monitored by Auckland Council, 18 sites displayed improving trends 
in total suspended solids concentrations, with 12 of these trends being statistically significant. Total 
suspended solids concentrations at the two remaining sites (Goat Island and Orewa) were low and 
stable over the full monitoring period. This suggests that efforts by ARC to control sediment gen-
eration over the past 20 or so years are leading to improved environmental outcomes. However, it 
should be noted that while suspended solids includes sediments, they can also include other biologi-
cal and non-biological material. 

Figure 40: Trends in the concentrations of total suspended solids at Auckland Council's water quality  

monitoring sites that were sampled at monthly intervals from 1987-1993 to 2007 (Scarsbrook 2008).

4.5.4 Sediment characteristics and effects on seabed communities

Auckland Council (and its processor, ARC) and Waikato Regional Council monitor sediment charac-
teristics and seabed communities in a number of harbours and estuaries in the Hauraki Gulf (Fig-
ure 41). In 2000, ARC initiated a monitoring programme that was specifically designed to detect 
sediment-related changes in the composition of intertidal communities in Okura Estuary. Between 
2002 and 2004, this programme was expanded to include Puhoi, Wairewa, Orewa, Mangemangeroa, 
Turanga and Waikopua estuaries, which were all facing an increase in development pressure and an 
associated risk of increasing sedimentation. Whangateau Harbour was subsequently added in 2009, 
due to specific concerns about ecological degradation in that estuary. 

Trends in community composition, which are consistent with increased sediment-mud content, 
were detected at two sites in Turanga, Puhoi and Orewa estuaries and one site in each of the other 
estuaries, with the exception of Mangemangeroa. Changes in diversity or in the abundance of spe-
cific taxa, which are consistent with ecological responses to increased terrestrial sedimentation or 
mud content, were also observed at one site in each of Orewa, Puhoi, Waikopua and Waiwera, and 
at four sites in Okura. 
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Sediment characteristics at four state-of-the-environment monitoring sites in the central Wait-
ematä Harbour were relatively stable between October 2000 and February 2008, apart from a slight 
decrease in the proportion of medium sand in Shoal Bay. Over that period, changes have occurred 
in species’ abundances, but these cannot be attributed to sedimentation or contamination effects. 
Rather, they may reflect natural long-term cycles in species’ abundances (Townsend et al. 2008b).

However, long-term monitoring of the state of the environment by ARC has detected a marked 
change in the sediment characteristics of Mahurangi Harbour, which occurred between April 1996 
and April 1997, and involved an increase in the proportion of fine sand. This was followed by step-
wise declines in the populations of five taxa at the muddiest intertidal site (Hamilton Landing) in 
2000. These populations had not recovered by 2009. Three of the taxa (the wedge shell Macomona 
liliana, cockle Austrovenus stutchburyi and polychaete Scoloplos cylindrifer) are known to be sensitive 
to increased suspended sediment concentrations. Furthermore, cockles and wedge shells are each 
declining at one other site within the harbour (Halliday and Cummings 2009).

Similarly, Waikato Regional Council found that the proportions of mud and fine sand increased 
significantly between 2001 and 2006 at monitoring sites in the Firth of Thames (Figure 42). However, 
the proportion of mud remained relatively low (< 6%). The source of the fine sediments is likely to 
have been run-off from the catchment, but it is not easy to determine whether it was due to recent 
run-off events or the redistribution of historically deposited fines. Although clear trends of increas-
ing fine sediments and decreasing coarse sand were observed, these changes were not matched by 
negative trends in species that are sensitive to fine sediments. Diverse macrofaunal communities 
remained at the five sites, which included species that cannot tolerate a high proportion of fine 
sediments. This suggested that despite that the increase in sediment-mud levels, they remained low 
enough to maintain populations of sensitive species (Felsing and Singleton 2008).

4.5.5 Strategic considerations for sediment

1. Terrigenous sediment is a serious contaminant that is responsible for relatively large-scale 
impacts on the coastal margin.

2. Sediment impacts are the result of ongoing and historical changes in land-use and land-
disturbance activities.

3. Sediment accumulation has caused coastal infilling in the southern Firth of Thames and 
elsewhere, and has contributed to widespread mangrove expansion.

4. Estuaries affected by sedimentation have experienced reductions in the abundance of  
species that are sensitive suspended and deposited sediments, and changes in the  
composition of their benthic communities.

5. Suspended solids concentrations have been declining in coastal water from the Auckland 
Region. However, the interpretation of this trend is complicated because suspended solids 
include sediment as well as other particulate material.
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Figure 41: Estuaries, harbours and sites where benthic ecology and sediment characteristics are  

monitored by the former ARC (Auckland Council’s predecessor) and Waikato Regional Council.  

Colours indicate the year that monitoring began at each location.

Figure 42: Average grain size characteristics of sediments from monitoring sites in the southern  

Firth of Thames in April 2001 and April 2006 (Felsing and Singleton 2008). Grain sizes: mud = < 63 μm;  

fine sand = 63-250 μm; medium sand = 250-500 μm; coarse sand = 500-1000 μm; very coarse sand = > 1000 μm.
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4.6 Introduced (non-indigenous) marine species

Introduced plants and animals pose a serious threat to the natural ecology, native biodiversity,  
aesthetics, commercial activity and human health by:

 – competing with native species for food, space and other resources;
 – consuming native and aquaculture species;
 – spreading disease;
 – exerting toxic effects; and
 – fouling natural and artificial surfaces.

Exotic marine species are accidentally introduced and spread through the movement of vessels, 
structures and equipment. Common transportation vectors include ships’ ballast water and sea-
chests, fouled vessel hulls and fouled marine equipment. They can also be unintentionally or inten-
tionally introduced and spread through activities such as aquaculture, fisheries and the aquarium 
trade (Hewitt et al. 2004). 

Owing to the amount of international, national and regional shipping and boating activity, ports 
are recognised as high-risk areas in terms of their capacity to facilitate the introduction, establish-
ment and spread of introduced species. Consequently, Biosecurity New Zealand (Biosecurity NZ) has 
conducted baseline surveys to document the occurrence of non-indigenous species in New Zealand’s 
major port and associated harbours, including Auckland (Inglis et al. 2005, Inglis et al. 2006). In addi-
tion, routine surveillance is carried out to detect the presence of a group of non-indigenous species 
that present a significant risk of arriving and establishing in New Zealand. That monitoring is also 
used to detect changes in the distribution of established non-indigenous or pest species (Morrisey 
et al. 2010). As with the baseline surveys, sampling in this programme is focused on harbours that 
have high-volume commercial ports and marinas, which are entry points for international vessels 
(Morrisey et al. 2007b). Biosecurity NZ supports passive surveillance too, through the identification 
and recording of unusual specimens provided by members of the public.

A total of 139 non-indigenous marine species in the Hauraki Gulf have been recorded by Biosecurity 
NZ (Figure 43). Many of these appear to be well established in the Port of Auckland and have wide-
spread distributions in other ports and marinas nationwide. However, a number of recent arrivals are 
notable for their potential to cause adverse effects. Among them were three species listed on the 
New Zealand Unwanted Organisms register (which only contains eight marine species):
1. The Mediterranean fanworm Sabella spallanzanii is a large (up to 70 cm in length) tube-

building polychaete that is native to the Mediterranean and Atlantic coasts of Europe. Sabella 
spallanzanii can form dense mats that could affect native species by competing for food and 
space. They could also affect nutrient-cycling processes due to their high filtering capacity. 
Sabella spallanzanii prefer growing on hard vertical surfaces and, in other countries, have been 
observed growing on mussel ropes. They are not considered to be a significant nuisance by 
marine farmers. However, dense beds could become a hazard to recreational and commercial 
fishers through the clogging of dredges and fouling of other fishing gear.

2. The clubbed sea squirt Styela clava (Figure 44), which is native to the coastal waters of Japan, 
Korea, northern China and Siberia. Styela clava was first identified in New Zealand in the 
Viaduct Basin, Waitematä Harbour, in August 2005, and was subsequently found to be relatively 
widespread. This species poses a potential threat to the marine environment and its resources, 
particularly to mussel farming. In its native range it is known to foul hanging baskets of oysters 
and fish cages, and in Canada it has caused a decline in the production of cultivated mussels 
(see Gust et al. 2009).

3. The Asian kelp Undaria pinnatifida (Figure 44) was detected in the Auckland port area in 
September 2004, but was first discovered in Wellington Harbour in 1987. It is an invasive 
seaweed originating from temperate regions of Japan, China and Korea, where it is farmed 
as a food crop (commonly known as Wakame). Undaria pinnatifida rapidly colonises bare 
space following environmental disturbances, and forms a dense canopy which prevents other 
seaweeds from gaining a foothold. It out-competes native species through rapid growth, early 
maturity and large reproductive output. It is easily spread by human activities and has a hardy 
microscopic stage which is difficult to eradicate.
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Another arrival of note is the Japanese mud crab Charybdis japonica, which is a large and aggressive 
(maximum carapace width ~ 10 cm) paddle crab that is native to the north-west Pacific, including 
coastal regions of China, Malaysia, Korea, Taiwan and Japan. It was probably introduced to New Zea-
land in the late 1990s by international shipping, and was first discovered in Waitematä Harbour by 
a commercial fisher in September 2000. By April 2002 it was widely distributed in the harbour and 
in September 2002 it was found also in Weiti and Tamaki estuaries. Charybdis japonica could be a 
significant predator of small bivalves with populations such as cockles (Austrovenus stutchburyi), 
pipi (Paphies australis), scallops (Pecten novaezelandiae) and mussels (Perna canaliculus) being par-
ticularly vulnerable. There is no native crab equivalent to C. japonica in New Zealand estuaries (Gust 
and Inglis 2006).

Once established, the eradication of non-indigenous marine species is extremely difficult to 
attain. Management is therefore focused on preventing the introduction and spread of species to 
locations where they do not presently occur.

4.6.1 Strategic considerations for introduced marine species

1. The Port of Auckland is a high-risk area in terms of its capacity to facilitate the introduction, 
establishment and spread of introduced species.

2. The large amount of boating and other marine-based activities in the Gulf increases the risk 
that introduced species will be spread.

3. At least four unwanted or high-isk species have arrived in the Gulf over the past 10 years or so.
4. Once established, the eradication of non-indigenous marine species is extremely difficult and 

often in practice impossible

Figure 43: Number of non-indigenous marine species recorded in the Hauraki Gulf through Biosecurity  

New Zealand’s baseline and surveillance surveys, and specimens obtained through passive surveillance.



State of the Environment Report 2011 83

Figure 44: Images of (a) the clubbed sea squirt Styela clava growing on shallow-reef habitat in  

Long Bay Marine Reserve in 2007, and (b) the Asian kelp Undaria pinnatifida fouling mussel lines  

in Fitzroy Harbour in 2006. (Photos courtesy of Dr Shane Kelly, Coach and Catchment Ltd.)

 A.

 B.

4.7 Harmful algae, pathogens and mass mortalities
 

Harmful algae and pathogens are commonly linked to mass mortalities of individual or multiple 
marine plant and animal species. Harmful algae also pose a serious health risk for humans who 
consume affected seafood or who live in coastal areas. Little is known about the historical occur-
rence and ecology of harmful algae and pathogens in New Zealand, so it is not possible to determine 
whether human activities have exacerbated their occurrence. Outbreaks could possibly be promoted 
by creating favourable environmental conditions for the survival and growth of harmful species, 
or by facilitating their spread among locations. The susceptibility of marine plants and animals to 
the effects of harmful algae and pathogens could be increased as well, if ecological resilience is 
already compromised by human activities such as fishing or pollution (Hsieh et al. 2010, Österblom  
et al. 2008).
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A routinely collected record of harmful algal blooms and pathogens is not maintained by any par-
ticular organisation. The scientific literature, records from the Ministry of Agriculture and Fisheries’ 
(MAF) Investigation and Diagnostic Centre and personal communication with scientific experts was 
therefore used to produce a list showing the first records of harmful algae and pathogens, and their 
subsequent frequency of occurrence (Table 5). Given the limitations of the dataset, this list is likely 
to be incomplete. However, it suggests that the prevalence of harmful algae blooms and pathogens 
has increased since the 1980s, and that outbreaks of these organisms have had rapid and highly vis-
ible impacts on humans, susceptible species and associated industries. 

Notable events caused by harmful algae and pathogens include:
 – blooms of a previously unknown toxic algae, Karenia concordia, in 1992/93 and 2002 which 

resulted in significant human health issues and the deaths of fish, other algae and farmed paua;
 – the occurrence of a herpes virus in 1995, which caused what is considered to be the largest 

mass mortality of a fish species ever recorded (the Australasian pilchard Sardinops sagax 
neopilchardus);

 – mortality of up to 60 to 80% of cockles in Whangateau Harbour in 2009, linked to a bacterial 
infection which was potentially exacerbated by high temperatures causing heat stress; and

 – mass mortalities of juvenile Pacific oysters in 2010 linked to a herpes virus, which killed up  
to 80% of spat.

Year Harmful algae 
or pathogen

Type of harmful 
organism

Notes

1983 Cerataulina 
pelagica and 
Prymnesium 
calathiferum

Algae Marine life was killed through oxygen depletion 
caused by the seemingly harmless diatom Cerataulina 
pelagic. A bloom of a previously unknown toxic algae, 
Prymnesium calathiferum, was also recorded in Bream 
Bay and its occurrence was linked to fish and shellfish 
kills (Chang and Ryan 1985, Chang et al. 2008). 

1992/93 Unidentified 
virus?

Virus Significant die-offs of the canopy-forming kelp Ecklonia 
radiata were recorded in many parts of the Gulf. Virus-like 
particles were identified in diseased plants (Easton et al. 
1997), but amphipod grazing of injured plants has also been 
implicated in E. radiata die-offs (Haggitt and Babcock 2003).

1993 Karenia concordia 
(originally 
identified as 
Gymnodinium 
cf. breve) and 
possibly K. 
mikimotoi and 
K. brevisulcata

Algae First reported cases of shellfish poisoning of humans in 
New Zealand, caused by a newly discovered species. More 
than 180 people were notified as developing neurological 
symptoms, and there were numerous reports of respiratory 
irritation from an airborne toxin in sea spray (Chang et 
al. 1995, Chang and Ryan 2004, Chang et al. 2008, Chang 
2011). Although not specifically linked to toxic algae, mass 
mortalities of scallops in the Omaha Bay and Kawau 
Island areas were also recorded (Morrison 1999).

1995 Herpesvirus Virus Extraordinarily large-scale mortalities of Australasian 
pilchard Sardinops sagax neopilchardus that spread rapidly 
between March and September 1995 and covered more 
than 5,000 km of the Australian coastline and 500 km of 
the New Zealand coastline. This event is thought to be 
the largest mass mortality ever recorded, both in terms 
of the number of fish and the geographic range affected. 
The rate of spread suggested that a vector was involved in 
the transport of the virus. Possible vectors include birds, 
marine mammals, ships and contaminated bait (Hyatt 
et al. 1997, Jones et al. 1997, Whittington et al. 1997).

1998/99 Unknown 
cause of scallop 
mortality.

Unknown High mortality in scallops with a “black gill” condition 
observed in relation to the die-off. This condition was not 
considered to be indicative of a causative disease agent 
(although Rickettsiales-like organisms were found in animals 
with the condition) (Cryer 2001). A massive increase in the 
distribution and density of the filter-feeding tube worm 
Chaetopterus occurred around the same time too, suggesting 
that broad-scale environmental conditions could also have 
contributed to scallop mortality (Cryer 2001, Tuck et al. 2006). 
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Approx. 1998 
onwards

Ostreopsis 
siamensis

Algae Blooms of the toxic algae Ostreopsis siamensis appear to 
be a new phenomenon on shallow reefs in New Zealand. 
Ostreopsis siamensis grows as a distinctive rusty-brown-
coloured mucilaginous film on reefs and blooms in the 
Gulf and have been linked to spine loss, and an associated 
increase in predation on grazing urchins Evechinus chloroticus 
(commonly known as kina). This phenomenon had not 
been reported prior to 1998 (Shears and Ross 2009, 2010). 

2002 Karenia concordia 
and possibly K. 
mikimotoi and 
K. brevisulcata

Algae Blooms of the toxic algae Karenia concordia occurred in 
mid-October and caused mass mortalities of another 
conspicuous bloom-forming algae Noctiluca scintillans, tens 
of thousands of fish in the central-inner Gulf (including 
spotties, yellow-eyed mullet, flounder, eels, parore and goby/
blennies) and around 8,500 paua at a farm in Kennedy Bay 
were also killed (Chang et al. 2003, Chang et al. 2008).

2009 Coccidian and 
Mycobacterium 
infection

Bacterial 
pathogens

Mass mortalities of up to 60 to 80% of cockles 
in Whangateau Harbour were linked to bacterial 
infection. Cockles were possibly weakened by heat 
stress, which left them more susceptible to infection 
(MAF Investigation and Diagnostic Centre 2009c).

2009 Unknown Unknown Large numbers of dead pilchards (Sardinops neopilchardus) 
were recorded on beaches north of Auckland (Martins Bay, 
Orewa Beach, Red Beach, Stanmore Bay, Army Bay and Long 
Bay) from 3 to 31 July 2009, and deaths of jack mackerel 
(Trachurus spp.) were reported on Aotea (Great Barrier 
Island) on 5 August 2009. Internal parasitic infections were 
detected in the pilchards, but these were not considered to 
have caused the deaths. No other evidence of an infectious 
agent was detected in the pilchards of mackerel (MAF 
Investigation and Diagnostic Centre 2009a and 2009b).

2010 Ostreid 
herpesvirus 
OsHV-1

Virus Mass mortality of juvenile Pacific oysters occurred on oyster 
farms from Parengarenga Harbour in Northland to Ohiwa 
in the eastern Bay of Plenty were linked to a herpesvirus. On 
some farms, up to 80% of juvenile oysters died, compared 
with 5 to 10% in a normal year. The die-off is expected to 
have a significant impact on production in the near term.

Occasional mass mortalities of other species, such as little blue penguins (Taylor 1976) and common 
dolphins, have also been recorded. Little blue penguins appear to be sensitive to a food limitation 
and have a relatively long history of reported mortality. For instance, in March-April 1975, 20 to 30 
dead penguins were found per kilometre along Pakiri Beach. They bore no signs of disease, but all 
examined had empty stomachs. It is thought that these, and other, blue penguin deaths were caused 
by limited food supplies, possibly associated with high sea temperatures (Taylor 1976).

4.7.1 Strategic considerations for harmful algae, pathogens and mass mortalities

1. Impacts from harmful algae, pathogens and mass mortalities of unknown cause typically occur 
very rapidly, have covered very large areas and have had severe consequences for humans, 
affected species and associated industries.

2. Records of these events are scattered among a variety of sources, making it difficult to access 
information and assess trends in occurrence and severity.

3. The role that human activities have in exacerbating the occurrence or spread of harmful algae 
and pathogens is not known.

4. The effects of mass mortalities could worsen, if human activities reduce the resilience of the 
marine ecosystem.
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4.8 Litter

Man-made litter is a ubiquitous and ongoing issue for the Hauraki Gulf. The volume of plastics and 
their persistence in the marine environment makes them particularly problematic, but a variety of 
other material also enters and accumulates in the coastal environment. 

Marine pollution by plastics is a global concern due to their environmental persistence, the large vol-
umes involved and their wide dispersal by ocean currents (Gregory 2009). Plastic litter:

 – fouls beaches;
 – entangles marine life and kills by drowning, strangulation, creating drag and reducing feeding efficiency; 
 – is often ingested by marine and bird life;
 – is the source and sink for xenoestrogens and persistent organic pollutants (POPs) in marine  

and aquatic environments;
 – acts as a vector for the dispersal of invasive species;
 – can degrade nursery habitats; and 
 – fouls vessel intake ports, keels and propellers, putting crews at risk.

Once in the ocean, floating debris is either forced back to the shore by onshore winds, or offshore 
winds carry debris toward major ocean currents. In the deep ocean, high pressure gyres tend to 
concentrate the debris, while low-pressure systems tend to disperse it. Over 260 species, including 
invertebrates, fish, seabirds and mammals, have been reported to ingest or become entangled in 
plastic debris, resulting in impaired movement and feeding, reduced reproductive output, lacera-
tions, ulcers and death (Gregory 2009). Plastics weaken and may kill seabirds through starvation and 
false feelings of satiation, irritation of the stomach lining, and failure to put on fat stores necessary 
for migration and reproduction. For example, prions (seabirds) retrieve very small prey from the sea’s 
surface, and can mistakenly collect plastic pellets floating on the water. In New Zealand, Harper and 
Fowler (1987) found that there was an increasing trend in the number of plastic pellets in the gizzards 
of five prion species washed up dead on Wellington beaches between 1958 and 1977. There was also 
an inverse relationship between the number of pellets found and the body weight of birds. 

Plastics become brittle when exposed to UVB radiation in sunlight, the oxidative properties of the 
atmosphere and the hydrolytic properties of seawater, and subsequently fragment into smaller and 
smaller pieces. Consequently, plastic fragments are widespread in the oceanic and sedimentary hab-
itats. The wide distribution of plastic pellets on New Zealand beaches was first reported by Gregory 
(1977). Pellet abundance was highly variable, but tended to be greatest close to major urban centres.

Plastics provide a direct and indirect pathway for the uptake of toxic organic contaminants by wild-
life. In seawater, plastics sorb and concentrate contaminants such as polychlorinated biphenyls (PCBs), 
dichlorodiphenyldichloroethylene (DDE), nonylphenol and phenanthrene. These can become several 
orders of magnitude more concentrated on the surface of plastic debris than in the surrounding sea-
water (Barnes et al. 2009, also see Rios 2007). Microscopic plastic fragments are likely to pose a greater 
risk than large plastic items because of their greater ratio of surface area to volume which increases 
sorption capacity. A range of chemicals is also usedas additives in the manufacture of plastics. Some 
of these, such as phthalate plasticisers and brominated flame retardants, are potentially harmful and 
have been associated with carcinogenic and endocrine-disrupting effects (Teuten et al. 2009).

4.8.1 Trends and characteristics of litter

Data on litter volumes and characteristics in the Hauraki Gulf was obtained from the Waitematä 
Harbour Clean-up Trust and the Sustainable Coastlines organisation. The Waitematä Harbour Clean-
up Trust operates a 6.5 m boat, the Phil Warren, which works in conjunction with kayaks and a flat-
bottomed punt, to clean the shoreline, beaches, estuaries and mangrove areas of the Waitematä 
Harbour, Tämaki Estuary and islands in the Auckland Region. The volume of litter collected by staff 
of the Trust increased steadily between 2004 and 2008 (Figure 45). Since 2008 the amount of lit-
ter collected has stabilised at around 420,000 to 450,000 litres per annum. Clean-up efforts by the 
Trust’s staff peaked in 2005, and have since been relatively steady at around 2,000 hours per annum. 
Similarly, the amount of litter collected per hour increased between 2005 and 2008, and has since 
stabilised. Note that stabilisation in the volume and yield of litter does not mean that the amount 
of trash entering the coastal environment has evened out. Rather, this may reflect the maximum 
amount of litter that can be collected with the resources available.
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Sustainable Coastlines co-ordinate community-based clean-ups at locations throughout the Gulf, 
and collect detailed data on the amount and characteristics of litter collected. Their data demon-
strates that litter entering the Hauraki Gulf comes from a variety of sources. Information obtained 
during recent clean-ups of North Shore beaches and Rangitoto Island indicates that in those areas the 
bulk of litter came from food packaging, household and personal items, and uncategorised sources.13 
In contrast, fishing-related material dominated the litter collected from Coromandel beaches (Figure 
46). At all locations, plastic materials were the dominant form of litter, and the relative contribution 
of plastics tended to increase at more remote locations.

4.8.2 Strategic considerations for litter

1. Litter is a ubiquitous, highly visible and ongoing issue for the Hauraki Gulf and beyond.
2. Plastics are particularly problematic owing to their environmental persistence and their effects 

on aesthetics and wildlife.

Figure 45: Litter collected by the Waitematā Harbour Clean-up Trust between 2003 and 2010, showing  

(a) estimated volume collected and effort exerted, and (b) the yield of trash per unit effort. Trash collected  

by volunteers has been excluded from the plot (data provided by Ben Harris, skipper of the Phil Warren).

 

 A.  B.

Figure 46: General sources (percentage by volume) of litter obtained from clean-ups carried out by Sustainable Coastlines 

on (a) the North Shore in April 2011, (b) Rangitoto Island in December 2010 and (c) Coromandel Peninsula in April 2011.

13. Includes plastic bags, cardboard boxes and packaging, glass bottle pieces, organic waste, plastic resin pellets, plastic of unknown  
origin and polystyrene/foam.
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4.9 Maintenance and recovery of biodiversity

Many native species that were once widespread in the Gulf and its catchments have either been lost 
or severely reduced in number and distribution, and an alarmingly large number of native species can 
only survive on small offshore islands that are free of mammalian herbivores and predators. Other 
species, such as seabirds, shorebirds and Bryde’s whales, have specific habitat or resource require-
ments and compete with humans for resources and space. Their survival or continued presence in 
the Gulf is threatened by the loss or modification of habitats and resources, or interactions between 
them and human activities. This section therefore uses the state of islands, seabirds, shorebirds and 
Bryde’s whales in the Gulf as key indicators for maintenance and recovery of biodiversity. These 
indicators are considered to be particularly important because of their national and international 
significance, the severity of threats and their high sensitivity to human activities. Note that benthic 
marine and fish biodiversity issues are covered in Sections 4.1 to 4.7 and are not considered further 
in this section.

4.9.1 Islands of the Gulf

The islands of the Gulf provide vital sanctuaries for New Zealand’s terrestrial biodiversity. It is esti-
mated to contain 425 “islands”, including reefs, stacks and sandbars, with islets of between 0.1 and 
1.0 ha being the most numerous feature (Lee 1999). All have been modified by human activities, 
with many of the larger islands being almost totally cleared of indigenous vegetation at some stage 
of their history. Probably the least modified island is Hauturu (Little Barrier Island), which contains 
the largest remaining area of relatively unmodified northern New Zealand forest that is protected 
from alien mammals. The island is sufficient large and high enough to provide a diverse mix of forest 
types, and forests at various stages of maturity. It is therefore capable of supporting species with 
very specific habitat requirements such as hihi (stitchbirds). 

Hauturu’s mountainous landscape is dominated by broadleaf forests near the coast, with north-
ern rata (Metrosideros robusta) and tawa (Beilschmiedia tawa) occurring on the slopes. Mixed kauri 
(Agathis australis) forest occurs extensively on ridges from 50 to 500 m, with forests of towai (Wein-
mannia silvicola) and tawa further up. These give way to summit vegetation dominated by quin-
tinea (Quintinea acutifolia), tawari (Ixerbia brexioides) and southern rata (Metrosideros umbellata). 
Although much of the island’s original forest cover remains intact at higher altitudes, lowland for-
est was cleared for timber and farming and is now dominated by dense pioneer growth of manuka 
(Leptospermum scoparium) and kanuka (Kunzea ericoides) in varying stages of transition to broad-
leaf and kauri forest communities (Rayner et al. 2007b). 

Kiore (the Polynesian rat, Rattus exulans) were present on the island for hundreds of years, and 
cats and pigs were released after the arrival of Europeans. The lower sections of the island were also 
temporarily grazed by cattle and sheep. Pigs were removed in the early 1900s, but cats and kiore 
remained until successful eradications in 1980 and 2004 respectively (Rayner et al. 2007b).

Hauturu (Little Barrier Island) is one of New Zealand’s first offshore sanctuaries and was originally 
established as a nature reserve in 1895. It has played a critical role in species conservation in New 
Zealand. By the 1880s it was home to the only surviving population of the nationally endangered hihi 
(Taylor et al. 2005), and it was among the first islands to be used for bird translocations, with brown 
and great spotted kiwi being moved to the island between c. 1903 and c. 1919 (Bellingham et al. 2010). 
Hauturu is one of only two breeding grounds for black petrel (the other being on Aotea (Great Bar-
rier Island)), and is the most important breeding location for Cook’s Petrel in the world (Rayner et al. 
2007a). It is one of the few places with thriving populations of nationally endangered North Island 
saddleback and kokako. North Island saddleback had been reduced to a single population of about 
500 individuals on Hen Island by 1910 and were transferred (via Cuvier Island) to Hauturu between 
1984 and 1988 (Parker 2008). Thirty-two kokako were transferred to the island between 1980 and 
1988, and the island is now home to one of the largest populations in the country (Innes and Flux 
1999). In addition, Hauturu is one of only two locations on which the nationally endangered chevron 
skink is known to occur (the other being Aotea (Great Barrier Island), Towns et al. 2002), and it is an 
important sanctuary for tuatara, which are only found in the wild on offshore islands in Cook Strait 
and to the east of the North Island (Gaze 2001). Prior to recent translocations to the islands of Tiritiri 
Matangi and Motuora, Hauturu also supported the only remaining population of New Zealand’s 
largest insect, the wetapunga (Deinacrida heteracantha).
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Many other islands in the outer Gulf have a high proportion of native forest cover too (Figure 
47). For instance, the land cover database (LCDB2) indicates that around 90% of Aotea (Great Barrier 
Island) has a cover of indigenous forest, broadleaved indigenous hardwoods, or manuka and kanuka. 
Eighty-six per cent of Kawau Island is covered by indigenous forest (including manuka or kanuka), 
and most of the islands around Coromandel Peninsula are covered in native vegetation, the notable 
exceptions being Great Mercury and Slipper islands. 

Motuora and Tiritiri Matangi have a long history of grazing, but they have recently been reveg-
etated with community assistance, producing extensive areas of regenerating coastal shrubland. 
Between 1990 and 2006, around 206,000 plants including 21 early successional species and some 
tall forest species were planted on 35 ha of retired pasture on Motuora (Towns et al. 2009). Simi-
larly, between 1984 and 1994, volunteers planted around 280,000 trees into rank pasture on Tiritiri 
Matangi (Towns et al. 2009).

Rangitoto Island is the youngest cone in the Auckland volcanic field, having erupted only about 
600 years ago, and is one of the least modified. It is an iconic landscape feature in the Hauraki Gulf, 
dominating the local seascape. Rangitoto’s bare lava fields, lava caves, pillars and tunnels are all 
obvious features of the island’s volcanic landscape. Its lava rocks host nearly 170 species of native 
trees and flowering plants, including many species of orchid and more than 50 kinds of fern. The 
vegetation on Rangitoto Island is internationally significant as an area of forest naturally colonising 
young basaltic lava flows. The island contains the largest area of pöhutukawa (and pöhutukawa-rata 
hybrid) forest in New Zealand. Its unique indigenous ecosystem and vegetation have been recog-
nised by its status as a separate and entire ecological district. 

However, most islands in the inner Gulf have lower proportions of native forest cover (Table 6). 
Motutapu and Motuihe have also been partially revegetated. Motutapu still consists of mostly pas-
ture with a coastal fringe of remnant indigenous vegetation that is often heavily infested with weed 
species (Lindsay et al. 2009), but the revegetation of Motuihe is more advanced. The Rotoroa Island 
Trust is replanting areas of Rotoroa Island. Approximately 17% of native vegetation on the inner Gulf 
islands is in protected areas, with cover largely consisting of land on islands administered by DOC as 
recreation, scenic or scientific reserves (Lindsay et al. 2009). 

Figure 47: Extent of native forest on islands of the Hauraki Gulf in 2001/02  

(based on GIS information in the land cover database two (LCDB2)).
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Table 6: Native forest cover on islands of the inner Gulf. Area estimates were obtained using  

GIS and the land cover database (LCDB2), with indigenous forest, broadleaved indigenous  

hardwoods, or manuka and kanuka vegetation classes from 2001-02.

Island Total Island 
Area (ha)

Forest  
Area (ha)

Percent  
Forested

Tiritiri Matangi 192 140 73%

Noises 25 23 91%

Rakino 154 16 11%

Rangitoto 2326 2307 99%

Motutapu 1560 79 5%

Motuihe 181 24 13%

Browns 60 0 0%

Waiheke 9274 3876 42%

Pakatoa 31 7 24%

Pakihi 116 26 22%

Rotoroa 92 16 17%

Ponui 1806 713 39%

Tarakihi 6 6 100%

Islands are particularly important for conservation because they can be kept free of mammalian her-
bivorous and predatory pests. Twenty-seven of the 62 (43%) islands in the Gulf that are larger than 
10 ha are currently free of mammalian herbivorous and predatory pests (Figure 48). Pest eradication 
has been occurring also on Rangitoto and Motutapu islands, but their pest-free status is yet to be 
confirmed. Beehive Island is pest free too, but this island is less than 10 ha in size. Predator fences 
have also been, or are being, used to establish predator-free sanctuaries at Tawharanui Regional Park 
and Shakespeare Regional Park, and Glenfern Sanctuary on Aotea (Great Barrier Island), although 
these are not within the Hauraki Gulf Marine Park.

The establishment and maintenance of pest-free sanctuaries has allowed threatened bird, reptile 
and insect species to be transferred among locations (Table 7 to Table 9). Translocation reduces the 
risk of populations being destroyed by a catastrophic event such as volcanism, tsunami, fire or dis-
ease. It can also be used to add genetic diversity to island populations, and contribute to ecosystem 
restoration. 

One nationally critical (takahe: threat status 1) and four nationally endangered (hihi, kokako, 
North Island weka and brown teal: threat status 2) bird species have been translocated to, or 
among, islands in the Gulf. Four of these species, including hihi, have involved translocations to 
Tiritiri Matangi Island. However, supplementary feeding is required to maintain translocated hihi 
(Ewen and Armstrong 2007). In addition, one nationally critical (Mercury Island tusked weta) and 
two nationally endangered (Mahoenui giant weta and wetapunga) insects, and one nationally vul-
nerable (Whitaker’s skink) reptile have been translocated. Motutapu is one of the few islands in the 
Auckland Conservancy that has significant wetlands, which will provide a rare opportunity for the 
translocation of wetland species once mammalian pests have been eradicated.

A comprehensive State of the Environment Report for Aotea (Great Barrier Island) was produced 
by the Great Barrier Island Trust and launched in February 2010 (Great Barrier Island Charitable Trust 
2010). That report highlighted the special features of Aotea’s (Great Barrier Island) environment, 
including: its low human population with extensive areas of natural or semi-natural vegetation, 
much of which is under some form of protection; the absence of some (but not all) of the predators 
which have ravaged the native New Zealand fauna elsewhere; and the consequent survival of several 
otherwise-endangered species. However, ongoing pressures (especially the presence of rodents) still 
threaten species such as brown teal and chevron skink, which could be lost from the island. 
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Aotea’s (Great Barrier Island) residents and rate-payers, and the management agencies involved 
with the island, place considerable value and emphasis on the island’s environment. This is reflected 
in legislation, planning documents, volunteer involvement and social research. However, commu-
nity and management responses have, generally, not matched the nature and scale of threats to 
native flora and fauna. A process for identifying, prioritising and agreeing on action was therefore an 
anticipated outcome from the State of the Environment Report for Aotea (Great Barrier Island). The 
Hauraki Gulf Forum has endorsed the report’s recommendation that a technical feasibility study be 
initiated which explores the methods, issues and costs/benefits of island-wide eradication of rats 
and feral cats. This recognised community interest in the issues raised in the State of the Environ-
ment Report for Aotea (Great Barrier Island), the ecological significance of the island to the future 
of the Hauraki Gulf Marine Park and the potential benefits of a successful eradication programme.

Figure 48: Locations in the Gulf that are free of mammalian herbivorous and predatory pests, and where translocations  

of endangered birds, reptiles and/or insects have occurred. Red labels indicate sites that are free of mammalian 

herbivorous and predatory pests, green labels indicate sites that have received translocated species, and blue labels 

indicate sites that are free of mammalian herbivorous and predatory pests and have received translocated species.
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Table 7: Reintroduced and translocated bird species on islands in the Gulf and adjoining mainland sanctuaries.
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Little Barrier Island • • • •

Aotea (Great 
Barrier Island)

•

Tawharanui Marine Park • • • • •

Kawau Island • •

Motuora Island • • • •

Wenderholm 
Regional Park

•

Tiritiri Matangi Island • • • • • • • • • • • •

Motuihe Island • • • •

Crusoe Island

Waiheke Island •

Whanganui Island •

Cuvier Island • • •

Red Mercury Island 
(Mercury Group)

• •

Stanley Island 
(Mercury Group)

•

Threat Codes: 

  Nationally critical      Nationally endangered      Nationally vulnerable      Serious decline 

  Gradual decline      Range restricted      Sparse      Not threatened
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Table 8: Reintroduced and translocated insect species on islands in the Gulf.
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•
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(Mercury Group)

•

Double Island 
(Mercury Group)

•
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(Mercury Group)

• • •

Ohinau •

Mahurangi •

Table 9: Reintroduced and translocated reptile species on islands in the Gulf.

Lo
ca

ti
on

A
u

ck
la

n
d

 G
re

en
 G

ec
ko

D
u

va
u

ce
l's

 G
ec

ko

Eg
g-

la
yi

n
g 

Sk
in

k

Fo
re

st
 G

ec
ko

M
ar

b
le

d
 S

ki
n

k

N
or

th
er

n
 T

u
at

ar
a

Ro
b

u
st

 S
ki

n
k

Sh
or

e 
sk

in
k

W
h

it
ak

er
's

 S
ki

n
k

Little Barrier Island •

Tawharanui Marine Park • •

Motuora • •

Tiritiri Matangi • •

Motuihe •

Crusoe Island •

Red Mercury 
(Mercury Group)

• •

Stanley Island 
(Mercury Group)

•

Korapuki Island 
(Mercury Group)

• • • •
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  Nationally critical      Nationally endangered      Nationally vulnerable      Serious decline 

  Gradual decline      Range restricted      Sparse      Not threatened
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  Not threatened
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4.9.2 Shorebirds

The Firth of Thames is an internationally important feeding area for waders, and is recognised 
through its designation as a wetland of international importance (commonly called a Ramsar site) 
under the Convention on Wetlands of International Importance Especially as Waterfowl Habitat.14 

Migratory shorebirds utilise a number of sites over the course of a year, including winter feeding 
grounds, breeding grounds and, often, refuelling sites during long migrations. The Firth of Thames 
and Manukau Harbour are terminal points for the East Asian-Australasian flyway, which is used by 
shorebirds that migrate from winter in Siberia and Alaska to summer in the southern hemisphere, 
and later return between March and June to their northern breeding grounds (Battley and Brownell 
2007). A total of 132 species of birds has been recorded in the Firth of Thames with approximately 
35,000 waders utilising the area each year. This includes about 11,000 Arctic breeders from Siberia 
and Alaska which come to forage on the extensive and highly productive intertidal sand and mud-
flats of the Firth of Thames (Battley and Brownell 2007). 

The New Zealand Ornithological Society has been routinely counting birds at a number of sites 
in the Firth of Thames since 1960. Between 1960 and 2005 four of the most common wader species 
increased in number, four species maintained relatively stable numbers, and seven species displayed 
declining trends. A summary of the long-term trends displayed by each of these species is provided 
below (Battley and Brownell 2007):

Increasing Trends

Species Seasonal patterns Long-term patterns

Pied oystercatcher Higher counts in winter Numbers increased from 1960s to late 
1990s then declined through to 2005.

Variable oystercatcher Slightly higher counts in summer Low numbers from 1960s to mid-
1980s, then a sharp increase.

Spur-winged plover Slightly higher counts in winter Single birds or pairs first recorded in 1977. 
Numbers increased sharply from mid-1980s 
to late 1990s then declined slightly.

Whimbrel Higher counts in summer Numbers generally low, but increased in 
late 1970s and remained relatively stable 
through to 2005. Roosting area changed 
possibly due to mangrove expansion.

Declining Trends

Species Seasonal patterns Long-term patterns

Banded dotterel Slightly higher counts in winter Declining summer numbers and 
fluctuating winter numbers since 1960. 
Older records indicate that large numbers 
used to occur at sites which are no longer 
utilised. Habitat changes appear to have 
reduced the attractiveness of the southern 
Firth of Thames to banded dotterels.

Wrybill Higher counts in winter Numbers have declined since the early 
1970s and spatial patterns have changed, 
probably due to mangrove expansion.

Pacific golden plover Higher counts in summer Numbers dropped sharply after 1987 
and very few were recorded from 1988 
to 2004. Relatively high numbers were 
recorded in 2005, which was a good year 
for golden plovers nationally. Areas that 
were once used by golden plover have 
now been colonised by mangroves.

14. The Convention on Wetlands of International Importance Especially as Waterfowl Habitat was adopted on 2 February 1971  
in the Iranian city of Ramsar, and is commonly known as the Ramsar Convention. 
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Turnstone Higher counts in summer Numbers increased from the 1960s to the 
late 1970s, and subsequently declined. 
Winter numbers were low between 
1989 and 2005 (none recorded in nine 
years, < 5 in three years and 15 birds in 
one year), and were consistently low 
in summer between 1994 and 2005. 

Curlew sandpiper Higher counts in summer Fluctuating numbers with three 
peaks between the 1960s and 1995. 
However, numbers dropped sharply 
after 1995 and curlew sandpiper were 
virtually absent through to 2005.

Red-necked stint Higher counts in summer Numbers declined since the 1960s, 
possibly due to mangrove expansion.

Eastern curlew Higher counts in summer Summer numbers declined strongly 
between the 1960s and 2000. Only 
occasional visitors were recorded in 
summer or winter between 2000 and 2005.

Stable

Species Seasonal patterns Long-term patterns

New Zealand dotterel Slightly higher counts in winter Fluctuating numbers around a long-
term mean since the 1960s.

Bar-tailed godwit Higher counts in summer Numbers fluctuated between 
the 1960s and 2005.

Sharp-tailed sandpiper Higher counts in summer Numbers fluctuated between the 1960s and 
2005, with a large peak in the late 1980s 
and lows in the mid-1970s and late 1990s.

Red knot Higher counts in summer Numbers fluctuated between the 
1960s and 2005, with peaks in the 
late 1960s to early 1970s and early 
2000s, and a low in the early 1990s.

In addition to adequate food supplies, wading birds also require safe, undisturbed and otherwise 
suitable roosting areas. Habitat changes at individual roosting sites have led to major shifts in the 
distribution of many species in the Firth of Thames. The Karito, Waitakaruru and Piako sections of 
the southern Firth were important roosting sites for many species from the 1960s to the 1980s, 
but owing to mangrove growth they are now only irregularly used by a low number of birds. Con-
versely, a sandbar began to develop near the Waihou River mouth in the mid-1990s, which has seen 
large increases in the number of red knots, whimbrels and bar-tailed godwits utilising this area. The 
southwards growth of a shellbank opposite the Miranda Naturalists’ Trust Shorebird Centre, and 
subsequent infilling with mangroves behind it, has also caused local changes in the use of that area 
by knots and bar-tailed godwits over the past 45 to 50 years. 

In many cases the reasons for trends in shorebird numbers cannot be determined with certainty, 
due to the birds’ highly mobile nature. Counts are affected by changes in breeding productivity, 
immigration, emigration and survival, as well as in sampling and observer biases. Survival and breed-
ing success is affected by factors in both the Hauraki Gulf and the other areas used by the birds.  
The degree of site-faithfulness can also affect bird numbers over time. Unfortunately, informa-
tion on these factors is lacking, even for common shorebird species in New Zealand (Battley and  
Brownell 2007).
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4.9.3 Seabirds

The Hauraki Gulf Marine Park is an internationally recognised region of high biodiversity value, and 
seabirds, as top predators, are key components of this ecosystem. The region boasts one of the high-
est diversities of seabirds in the world (over 80 species). 

The Hauraki Gulf islands, like many offshore islands throughout this country, provide a “lifeboat” 
for precious terrestrial fauna, which have been subject to human-induced ecosystem destruction 
and species’ extinctions on mainland New Zealand. Similarly, these islands are also vitally important 
refugia for seabirds, with 23 species confirmed to breed in the region (Table 10). 

Seabirds extend island ecosystems by feeding exclusively within the marine environment and in 
a range of different marine habitats. Short-ranging species (such as terns, shags and blue penguin) 
forage within coastal habitats less than 10 km from their breeding sites, whereas species favour-
ing the wider continental shelf habitat (including smaller shearwaters, prions, storm petrels, diving 
petrels and gannets) may travel considerable distances from their breeding colony on a single trip 
(< 100 km). For the larger shearwaters and pelagic petrels, foraging areas may extend to hundreds, 
and in some cases thousands, of kilometres away on highly productive shelf-break areas, eddies and 
upwellings. As a result, the Hauraki Gulf’s influence as a breeding “home-base” from a seabird per-
spective extends well beyond its boundaries. 

Equally, the health of these critically important seabird populations is dependent on the wider 
oceanic environment. Seabirds are affected by tidal movements, spatial and temporal changes in sea 
temperature, salinity and plankton occurrence, and cross-shelf intrusions of subtropical water from 
the East Auckland current. Fisheries and other activities that reduce water quality or cause the loss 
of marine habitats can also affect seabirds. Thus the Hauraki Gulf is a dynamic environment in which 
seabirds rely on food that is patchy in distribution and ephemeral by nature. Consequently, there is 
a strong need to understand spatial and temporal patterns within the Gulf environment in relation 
to management decisions that could affect seabirds.

The 2008 Hauraki Gulf State of the Environment Report identified the need for systematic seabird 
and island surveys throughout the Gulf. The last major surveying was undertaken in the late 1980s/
early 1990s, but there has been very little data gathered following island eradications of mammalian 
pests. To date, comprehensive studies have been carried out on only four of the 23 species that breed 
in the Gulf. These are the critically endangered New Zealand fairy tern and the vulnerable ranked 
black petrel, Cook’s petrel and flesh-footed shearwater. 

The New Zealand fairy tern is this country’s most endangered species, with only 43 individuals 
estimated to remain prior to the 2010/11 breeding season, with a further six chicks fledging over that 
period. The total population contains only 10 breeding pairs, of which eight are fertile. Fledging suc-
cess has been ensured through intensive management by DOC, with the help of the New Zealand 
Fairy Tern Trust and community volunteers. However, recruitment into the breeding population has 
remained low (Hansen 2006). Only one pair breed within the boundaries of the Hauraki Gulf Marine 
Park (at Pakiri, where two chicks were produced in the 2009/10 season), although the largest con-
centration of breeding fairy terns is located at Mangawhai Harbour, which directly adjoins the north-
ern boundary of the park (Ismar and Baird unpublished; Department of Conservation unpublished 
information).

Black petrel breed at only two sites: Mount Hobson (Hirakimata) on Aotea (Great Barrier Island) 
and Hauturu (Little Barrier Island). Protection of these two areas is critical to the survival of this spe-
cies. The most recent population estimate from a 35 ha study area at Mount Hobson was 3,342 to 
4,130 birds (including c. 1,360 breeding pairs) (Bell et al. 2011). Black petrel breeding success at Mount 
Hobson ranges from 67 to 84% (chicks fledged from eggs laid; mean 75%), and out of 1,668 chicks 
banded during the study, 66 have been recaptured at the colony (Bell et al. 2011). The youngest age 
of return is three years old, but the mean is 5.1 ± 0.2. The age of first breeding ranges from four to 
nine years (mean 6 ± 0.2). A minimum of 46% of chicks departing the colonies survive to age three. 
After three years of age c. 89% survive, for an estimated adult survival rate of 87% (Bell et al. 2011). 
This survival rate is extremely low for a procellariiforme and of great conservation concern. Geolo-
cator light-loggers fitted to 11 birds during breeding season have provided preliminary foraging and 
at-sea distribution data. Initial data indicates that black petrel forage west and east of northern New 
Zealand, as far as the Kermadecs, East Cape, Eastern Australia and towards Fiji. A further 80 devices 
have been deployed and data from them is expected to be published during 2011.

Population estimates of Cook’s petrel on Hauturu (Little Barrier Island) were upgraded in 2005 
from a previous estimate of 50,000 plus breeding pairs to 286,000 (95% confidence interval: 213,000 
to 413,000) pairs (Rayner et al. 2007a). Similarly the species conservation status (IUCN red list) of this 
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species was downgraded from Endangered to Vulnerable following the population revision and the 
eradication of kiore (Pacific rat) from Hauturu in 2004. Prior to the removal of kiore, the breeding suc-
cess of Cook’s petrel was 0.09 + 0.04 chicks per burrow. After kiore were removed in 2004, breeding 
success increased to 0.59 + 0.03 chicks per burrow (Rayner et al. 2007b).

Flesh-footed shearwaters principally breed on nine islands in New Zealand, although smaller 
colonies (generally < 10 pairs) occur at up to 10 other sites (Taylor unpublished data). These include 
three islands in the Hauraki Gulf Marine Park: Green and Middle Islands of the Mercury Island Group 
and Ohinau Island (Ohena Sub-group of Mercury Group). Taylor (unpublished data) estimated that 
New Zealand’s total population of flesh-footed shearwaters consisted of 25,000 to 50,000 pairs. 
However, a more recent population estimate from eight of the nine main breeding islands by Baker 
et al. (2010) is 8,614 occupied burrows (95% confidence interval: 6,689 to 10,540), which is equiva-
lent to annual breeding pairs. This would indicate that the New Zealand population of flesh-footed 
shearwaters is considerably less than the estimate Taylor suggests. Note that Middle Island in the 
Mercury Group, for which Taylor (unpublished data) estimated 3,000 pairs, was not included in the 
Baker et al. (2010) survey.

4.9.3.1 Ongoing seabird research projects

Although many gaps remain in our understanding of seabird populations and ecology, significant 
progress is being made in some areas. For instance, current or recent research projects have been 
examining:
1. Cook’s petrel census and tracking: This research has examined the sizes of the Cook’s petrel 

populations on Little Barrier and Codfish islands and is now investigating the role of the inter-
annual movements of Cook’s petrel within the Pacific Ocean in mediating divergent population 
genetics among the species (Rayner et al. 2007a; Rayner et al. 2007b; Rayner et al. 2007c; Rayner 
et al. 2008; Rayner et al. 2010; Rayner et al. in press-a). 

2. Black petrel census and tracking: This long-term research (since the 1995/96 breeding season) 
has examined the size of the black petrel population on Aotea (Great Barrier Island), population 
trends (adult and juvenile survival, recruitment, fidelity and annual breeding success) at 
the Mount Hobson (Hirakimata) colony and at-sea foraging and distribution (using global 
positioning system (GPS) and geolocator light logger technology) of breeding birds within New 
Zealand and migration through international waters to the wintering ground in South America 
(Bell et al. 2011).

3. Grey-faced petrel tracking from Ruamaahua (Alderman) Islands: This research used satellite 
telemetry to determine the at-sea distribution of 32 adult grey-faced petrels during July to 
October in 2006 and 2007 (MacLeod et al. 2008).

4. Flesh-footed shearwater and Pycroft’s petrel on Chickens Islands (Booth and Pierce 
unpublished)

 a.  Research on population dynamics and population changes following rodent eradications  
in early 1990s

 b.  Data-loggers attached to flesh-footed shearwaters in December 2010.
5. Flesh-footed shearwater population assessment (2010): Data collection of demographic, 

distributional and trophic information on the flesh-footed shearwater to allow estimation  
of effects of fishing on population viability: 2009/10 field season (Baker et al. 2010).

6. Grey-faced petrel surveys
 a. Motuora Island (Gardner-Gee et al. 2008)
 b. Little Barrier Island (Rayner et al. 2009)
 c. Goat Island (Hawere) (Russell unpublished).
7. Pterodroma project (from 2009): This research is using miniaturised tracking technology to 

investigate the seasonal movements of Pycroft’s and black-winged petrel within and beyond 
the Hauraki Gulf (Rayner unpublished). 

8. Fairy tern foraging study (2010): This work focused on the feeding ecology of the tern at 
Mangawhai Harbour and the distribution of non-breeding birds in Kaipara Harbour during the 
breeding season (Ismar and Baird unpublished).

9. Acoustic survey programme (from 2009): Developing biological (nocturnal) inventories to assess 
seabird distribution on islands, allowing also for the study of vocalisations (Gaskin unpublished)

 a. Mokohinau Group (2009 to 2011)
 b. Little Barrier Island/Hauturu (2009)
 c. Tawharanui (2009 to 2011)
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 d.  Also, Hen/Taranga, Hen and Chickens Group (2010); Aorangi Island, Poor Knights Group 
(2010/11) (although outside the Hauraki Gulf Marine Park, seabirds breeding on these islands 
are a major feature of the Gulf marine environment).

10. GPS tracking on Australasian gannets from Mahuki Island (Broken Islands, Aotea/Great Barrier 
Island) (from 2010): Gannets are ubiquitous top predators within the Hauraki Gulf and offer the 
potential to act as sentinels for changes in the marine environment that impact their prey and 
subsequent breeding success. This exploratory research is seeking to develop a capacity to use 
gannets as marine indicators within the Gulf through understanding of factors that predict the 
distribution of foraging birds tracked with high-resolution GPS tracking devices (Dennis and 
Rayner ongoing research started in 2010).

11. Hauraki Gulf Seabird Spatial Ecology project (Taylor, Ismar, Rayner and Gaskin ongoing research 
started in 2010 (Stage 1 – Mokohinau Group 2010 to 2012)), involving:

 a. black-winged petrel tracking (data-loggers);
 b.  isotope analysis and molecular sexing on seven species (little, fluttering and sooty shearwaters, 

grey-faced and black-winged petrels, common diving petrel and white-faced storm-petrel);
 c.  grey-faced petrel and sooty and fluttering shearwaters to be fitted with data-loggers  

in 2011.
12. Burgess Island (Mokohinau Group) vegetation and seabird survey (Gaskin and Heiss-Dunlop 

paper in preparation).
13. Seabird restoration projects
 a. Translocation of Pycroft’s petrels to Cuvier Island (Taylor between 2001 and 2003);
 b.  Translocation of diving petrels to Motuora Island (Gardner-Gee and Gummer in 2008 and 2009);
 c.  Restoring burrowing seabirds to Motuihe Island (a seabird restoration plan) (Gaskin and 

Heiss-Dunlop in 2011);
 d. Acoustic attraction projects:
  i. Motuora Island (in conjunction with translocations) – installed;
  ii. Tawharanui Marine Park (Tawharanui Open Sanctuary) – installed May 2011;
  iii.  Motuihe Island – install September 2011. Possibly other inner Gulf islands (e.g. Motutapu).

4.9.3.2 Future research priorities for seabirds

Ongoing research priorities for seabirds include:
1. Assessment and monitoring of population numbers and trends for a greater range of seabird 

species is urgently required to accurately assess their conservation status.
2. Monitoring for biosecurity risks (e.g. introduction of animal and plant pest species to breeding 

sites) is needed to cover all breeding locations. 
3. Locating the breeding sites of New Zealand storm petrel to identify critical breeding areas and 

determine population size, seasonal activity and conservation status (currently “data deficient” 
(NZ Bird Rankings), “critically endangered” (Birdlife International 2009).

4. Using top predators as indicators of key oceanographic sites within the Hauraki Gulf Marine 
Park (HGMP) (two parts):

 a.  There is a strong need to understand spatial and temporal patterns of marine hotspots 
within the Gulf region by which to base management decisions. Top predators such as 
seabirds present ideal indicators for understanding the locations of marine hotspots and this 
research seeks to investigate the inter-seasonal dynamics of key seabird species within the 
HGMP ecosystem. The research has two non-exclusive aims, being: 

  1) to investigate the spatial and temporal ecology of seabirds within the HGMP; and
  2)  to combine this geo-distributional data with oceanographic attributes into a model of key 

productivity areas within the HGMP.
 b.  Spatio-temporal ecology of seabirds in the HGMP. This research proposes to combine high-

resolution ecological studies of HGMP resident seabirds and remote sensor-based surveys 
of marine productivity within the HGMP at an inter-annual scale. For Australasian gannet 
and fluttering shearwater, the HGMP is an integral part of their home range and essential 
for completion of their life cycle. The spatial and behavioural ecology of these species will be 
investigated with deployments of high-resolution GPS tracking devices in combination with 
dive-depth logging devices on individuals. This data will reveal where and when animals 
forage within the HGMP, and this information will be combined with studies of stable 
isotopes and dietary analyses of birds returning to their colonies to reveal what prey are 
being consumed. 
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5. Movement and dispersal of petrels (at sea and between colonies).
6. Comparative study of seabird species in the Hauraki Gulf and Auckland west coast marine zones.
7. Continue long-term research projects (e.g. black petrels on Aotea (Great Barrier Island), Cook’s 

petrel on Little Barrier Island) to monitor population changes and at-sea risks.
8. Investigate restoration of seabird species on islands and headlands cleared of mammalian pests 

using new translocation techniques.
9. Develop tertiary-level student research projects.

Table 10: Seabirds breeding in the wider Hauraki Gulf area.

PR
O

CE
LL

AR
IIF

O
RM

ES Seabird species 
in Hauraki Gulf Breeding Locations

IUCN  
Rank

Threat 
Status

Threat  
Codes

Explanation  
(qualifiers in brackets)

Cook’s Petrel  
(Pterodroma 
cookii) **

98% of total population breeds 
on Hauturu/Little Barrier  
(2% on Codfish/Whenua Hou). 
Aotea/Great Barrier colony 
believed extirpated

V At Risk – 
Relict

B (Inc RR) > 20,000 mature 
individuals, stable or 
increasing, occupy < 
10% of their original 
range (Increasing, 
Range Restricted)

Pycroft’s Petrel 
(P. pycrofti) * **

Poor Knights; Hen/
Taranga and Chickens/
Marotere; Cuvier; Mercury 

V At Risk – 
Recovering

B (Inc RR) 5,000-20,000 mature 
individuals, population 
increase > 10% (Increasing, 
Range Restricted)

Black-winged 
Petrel 
(P. nigripennis) 

Breeding not confirmed 
although they have been 
found on Burgess Island (Dec 
2004, Jan 2006, Dec 2007); 
records for Poor Knights, Cuvier 

LC Not 
Threatened

(SO) (Secure Overseas)

Grey-faced Petrel 
(P. [macroptera] 
gouldi)

Breeds on majority of 
offshore islands (more 
than 2 km of the mainland) 
in the Hauraki Gulf; also 
Sentinel Rock, Goat/Hawere; 
Tawharanui Marine Park

LC Not 
Threatened

(De Inc 
RR)

(Designated, Increasing, 
Range Restricted)

Buller’s 
Shearwater 
(Puffinus 
bulleri) * **

Poor Knights only V Naturally 
Uncommon

(OL St) (One Location, Stable)

Flesh-footed 
Shearwater 

Hen/Taranga and Chickens/ 
Marotere, Mercury, Ohinau

NT At Risk – 
Declining

B(1/1) 
(RR TO)

20,000-100,000 mature 
individuals, 10-50% 
population decline 
(Range Restricted TO)

Fluttering 
Shearwater 

Poor Knights; Hen/Taranga 
and Chickens/Marotere; 
Mokohinau; Tiritiri Matangi 
and Wooded Island; Channel; 
Mercury, Alderman 

LC At Risk – 
Relict

B (RR) > 20,000 mature 
individuals, stable or 
increasing, occupy < 10% 
of their original range 
(Range Restricted)

North Island 
Little Shearwater 

Poor Knights, Chickens/
Marotere; Mokohinau; 
Mercury, Alderman 

V At Risk – 
Recovering

B (Inc RR) 5,000-20,000 mature 
individuals, population 
increase > 10% (Increasing, 
Range Restricted)

Sooty Shearwater 
(P. griseus)

Mokohinau, Mercury LC At Risk – 
Declining

B(1/1) 
(SO)

20,000-100,000 mature 
individuals, 10-50% 
population decline 
(Range Restricted)

Black 
(Parkinson’s) 
Petrel (Procellaria 
parkinsoni) * **

Aotea/Great Barrier; 
Hauturu/Little Barrier

V Nationally 
Vulnerable

B(1/1) 
(RR)

1,000-5,000 mature 
individuals (unnatural), 
stable (Range Restricted)

1. Species in bold are 
those breeding within the 
Hauraki Gulf Marine Park. 
2. * Hauraki Gulf endemics
3. ** New Zealand endemics
4.  IUCN Rank: C = Critical;  

E = Endangered;  
V = Vulnerable;  
NT = Near Threatened;  
LC = Least Concern. 

5.  Threat rankings for New 
Zealand birds – refer 
Townsend et al.  
(2008a), Miskelly et al. 
(2008) for more details 
and definitions
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PR
O

CE
LL

AR
IIF

O
RM

ES Fairy Prion 
(Pachyptila 
turtur)

Poor Knights LC At Risk - 
Relict

B (RR SO) > 20,000 mature 
individuals, stable or 
increasing, occupy < 10% of 
their original range (Range 
Restricted, Secure Overseas)

Common 
Diving Petrel 
(Pelecanoides 
urinatrix)

Poor Knights; Hen/Taranga 
and Chickens/Marotere; 
Mokohinau; Hauturu/
Little Barrier (Lot’s Wife); 
Tiritiri Matangi; Motuora; 
Channel; Cuvier; Mercury

LC At Risk - 
Relict

B (Inc 
RR SO)

> 20,000 mature 
individuals, stable or 
increasing, occupy < 
10% of their original 
range (Increasing, Range 
Restricted, Secure Overseas)

NZ White-faced 
Storm Petrel 
(Pelagodroma 
marina 
maoriana) **

Poor Knights; Mokohinau; 
The Noises; also Ohinau, 
Hongiora (Alderman)

LC At Risk - 
Relict

B (RR) > 20,000 mature 
individuals, stable or 
increasing, occupy < 10% 
of their original range 
(Range Restricted)

New Zealand 
Storm Petrel 
(Pealeornis 
maoriana) * **

Breeding not confirmed, 
but likely for Hauraki Gulf

C Nationally 
Vulnerable 
- Data 
deficient

(DP) (Data poor)

SP
EN

IS
CI

-F
O

RM
ES Northern  

Blue Penguin 
(Eudyptula  
minor iredalei)

Poor Knights; Hen/Taranga 
and Chickens/Marotere; 
Mokohinau; Hauturu/Little 
Barrier; Tiritiri Matangi; 
Motuora; Te Haupa; Kawau; 
Goat/Hawere; Aotea/Great 
Barrier (incl. offshore islands); 
Channel; Cuvier; Mercury; 
and some mainland sites

NT At Risk - 
Declining

DP EF 
(DP EF)

5,000-20,000 mature 
individuals, 10-30% 
population decline (Data 
Poor, Extreme Fluctuations)

PE
LE

CA
N

IF
O

RM
ES Australasian 

Gannet
(Morus serrator) 

Poor Knights (High Peak and 
Sugar Loaf Rocks); Mäori 
Rocks (Mokohinau); Mahuki 
(Broken Islands, Aotea/Great 
Barrier); Horuhoru Rock; some 
Coromandel/Thames islands

LC Not 
Threatened

(DE Inc 
SO)

(Designated, Increasing, 
Secure Overseas)

Pied Shag  
(Phalacrocorax 
varius) **

Breeds coastally through 
the Hauraki Gulf including 
inshore and offshore islands 

Little Shag 
(Phalacrocorax 
melanoleucos 
brevirostris)

Some inner Gulf islands 
and estuaries 

LC At Risk – 
Naturally 
Uncommon

(Inc) (Increasing)

Spotted Shag 
(Stictocarbo 
punctatus 
punctatus) **

Ponui; Waiheke; and some 
Coromandel islands

LC Not 
Threatened

CH
AR

AD
RI

IF
O

RM
ES Black-backed Gull 

(Larus 
dominicanus)

Breeds on some inshore 
and offshore islands (e.g. 
Mokohinau, Tiritiri Matangi); 
also coastal sites e.g. Miranda

LC Not 
Threatened

(SO) (Secure Overseas)

Red-billed Gull 
(L. scopulinus) **

Breeds on some inshore 
and offshore islands (e.g. 
Mokohinau, Tiritiri Matangi); 
also coastal sites

LC Threatened 
– 
Nationally 
Vulnerable

E(1/1) 20,000-100,000 mature 
individuals, 50-70% 
population decline

White-fronted 
Tern 
(Sterna striata) **

Breeds on some inshore 
and offshore islands (e.g. 
Mokohinau, Tiritiri Matangi); 
also coastal sites e.g. Miranda

V Threatened 
– 
Nationally 
Vulnerable

B(1/1) 
(DP)

1,000-5,000 mature 
individuals (unnatural), 
stable (Data Poor)

Caspian Tern 
(Hydroprogne 
caspia)

Breeds in coastal locations 
(e.g. Mangawhai)

NT Threatened 
– 
Nationally 
Vulnerable

B(1/1) 
(SO)

1,000-5,000 mature 
individuals (unnatural), 
stable (Secure Overseas)

NZ Fairy Tern 
(Sternula nereis 
davisae) **

Pakiri Beach; Mangawhai 
Heads; and Waipu Estuary 
(all mainland sites)

C Threatened 
– 
Nationally 
Critical

A (CD RR) < 250 mature individuals 
(natural or unnatural) 
(Conservation Dependent, 
Range Restricted)
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4.9.4 Bryde’s whales 

Bryde’s whales are listed as a nationally critical species (i.e. threat status 1) in New Zealand because 
of their small population size in this country. The total New Zealand population is estimated to have 
fewer than 250 mature individuals, with many of these feeding, breeding and raising their calves in 
the Hauraki Gulf. This large, slow-moving whale spends considerable time near the surface in one 
of the busiest waterways in New Zealand. Consequently, collisions between the whales and vessels, 
and interactions between the whales and other human activities are a serious concern. From 1989 to 
2008, there were 38 recorded mortalities of Bryde’s whales in New Zealand, of which:

 – 23 (61%) died of unknown causes (although data was not collected from most of these 
carcasses); 

 – two (5%) died from entanglement in mussel farm spat lines; and 
 – 13 (34%) were “probably or possibly” killed by vessel strike (Behrens and Constantine 2008). 

The bodies of 11 of the whales thought to be killed by vessel strike were obtained from the Hauraki 
Gulf (Behrens 2009).

Bryde’s whales have very specific feeding patterns and requirements: targeting tightly packed 
schools of small bait fish. Competition between Bryde’s whales and humans for this resource could 
have serious consequences for this species also (pers. comm. Rochelle Constantine, University of 
Auckland).

Figure 49: Number of known and probable fatalities of Bryde’s whales.

caused by vessel strikes (Behrens and Constantine 2008).

4.9.5 Strategic considerations for the maintenance and recovery of biodiversity

1. Islands of the Gulf have a highly critical role in preventing the extinction of native fauna.
2. Pest-free islands must be continuously monitored to prevent invasions of exotic flora and fauna.
3. Catastrophic events such as volcanism, tsunami, fire or outbreaks of disease could have severe 

consequences for island populations of threatened species.
4. Risks are greater for species that have self-sustaining populations on only a single island (e.g. hihi).
5. Efforts to replant islands, remove exotic mammalian predators and herbivores, and re-establish 

populations of threatened species have generally been successful, but some species such as hihi 
are less responsive to translocation due to their specific habitat requirements.

6. Nearly half (seven) of the 15 most common wader species in the Firth of Thames have displayed 
declining trends in their numbers since 1960.

7. Habitat change, and in particular the expansion of mangroves, appears to have contributed to 
declines in at least four of the above species.

8. A high proportion of the New Zealand Bryde’s whale population is resident in the Hauraki Gulf.
9. Bryde’s whales are highly threatened in New Zealand, being classified as a nationally critical 

species (i.e. threat status 1).
10. Eleven Bryde’s whales appear to have been killed by vessel strike and two by mussel line 

entanglement in the Hauraki Gulf between 1989 and 2008.
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4.10 Coastal development

Coastal development is a growing issue in terms of its environmental cost. The environmental 
impacts of coastal development tend to be unidirectional and cumulative (Kelly 2009). Among other 
factors, these impacts can include:

 – the degradation of natural landscapes and wilderness features;
 – modification of the natural coastline through reclamation and the construction of marinas, 

seawalls, wharves, boat ramps and other coastal structures;
 – habitat loss through direct or indirect physical disturbance during land development and  

the construction and maintenance of coastal structures;
 – the release of stormwater, wastewater, anti-foulants and other contaminants into  

the environment;
 – increased biosecurity risks for marine biota and coastal vegetation;
 – growing threats to coastal birds through direct disturbance, habitat loss and increased  

numbers of mammalian predators (including cats and dogs); and
 – increased pressure of fish and shellfish resources. 

In addition, coastal development can destroy or degrade sites that have important historical or cul-
tural values and reduce visitor access to the Gulf by decreasing the number of camping grounds.  
Several indicators are therefore used to examine patterns and trends in coastal development, includ-
ing: the extent of development around bays and beaches; trends and patterns of new coastal devel-
opment; loss of camping grounds; and overlap between coastal development and outstanding  
natural landscapes.

4.10.1 Development around bays and beaches

Bays and beaches have traditionally been focal points for coastal development. A qualitative assess-
ment15 of the land surrounding 232 mainland bays and beaches in the Gulf was therefore used to 
quantify the extent of development associated with these important coastal features. The bays 
and beaches used in the analysis were either named on 1:50000 topographical maps, or had adjoin-
ing coastal settlements. Forty-seven per cent of these bays and beaches have been fully urbanised, 
intensively developed, or moderately developed (Figure 50 and Figure 51). Conversely, the land sur-
rounding 38% of bays and beaches was either undeveloped or contained only scattered buildings. 
The remaining bays and beaches had small settlements. 

The Waikato Region had more undeveloped bays and beaches than the Auckland Region (36% in 
the Waikato Region cf. 5% in the Auckland Region), but the two regions had a similar proportion with 
scattered buildings (17% cf. 19%).

15. The degree of development was subjectively ranked into six categories using the latest satellite image on Google Earth™.  
The categories were: fully urban; intensively developed; moderately developed; small settlement; scattered buildings; and undeveloped.
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Figure 50: The degree of development in relation to the bays and beaches that were either named  

on 1:50000 topographical maps or had adjoining coastal settlements. The degree of development  

was subjectively ranked into six categories using the latest satellite image on Google Maps™. 

Figure 51: The proportion of bays and beaches from the Auckland and Waikato regions that were  

either named on 1:50000 topographical maps or had adjoining coastal settlements, and whose surrounding  

land use was categorised as: fully urban; intensively developed; moderately developed; small settlement;  

scattered buildings; and undeveloped. The degree of development was subjectively ranked using  

the latest satellite image on Google Maps™. 
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4.10.2 Trends and patterns in new development

Over the past 15 years, the greatest increase in coastal development has occurred in central to north-
ern parts of the Auckland Region (Figure 52 and Figure 53). This includes the relatively large-scale 
development of new or “greenfield” sites around the margins of the Auckland urban isthmus at 
Orewa, Albany, Silverdale, Long Bay, Hobsonville, Gulf Harbour, Botany and Flatbush. Smaller-scale 
developments have also occurred around the outlying towns of Warkworth, Snells Beach, Omaha, 
Matakana and Beachlands. As a consequence, intensive coastal development extends almost con-
tiguously from Maraetai Beach in the south, to Hatfields Beach in the north, with only three small 
breaks of less-intensive development around Whitford Peninsula, Long Bay-Okura and parts of the 
upper Waitematä Harbour (Figure 54). Urban development has modified a relatively large proportion 
of the western end of Waiheke Island too.

Figure 52: Changes in coastal populations between 1996 and 2006 with (a) areas where the  

population increased, and (b) areas where the population remained stable or declined.

A B.
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Figure 53: Changes in coastal dwellings between 1996 and 2006 with (a) areas where the number  

of dwellings increased, and (b) areas where the number of dwellings remained stable or declined.

A B.

Figure 54: Developed coastal areas (excluding Aotea (Great Barrier Island) in the Auckland Region in 2001.  

Data was obtained from built-up areas in the land classification database two (LCDB2).
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Holiday homes are likely to make a relatively minor contribution to coastal development in the Auck-
land Region, but residential development in holiday areas such as Omaha have still caused signifi-
cant localised effects (Kelly 2009). In contrast, the construction of holiday homes is responsible for a 
large proportion of coastal development on Coromandel Peninsula. The Thames Coromandel District 
experiences extreme holiday peaks in its population, particularly from 26 December to 4 January. 
Hotspots for holidaymakers include Opito Bay and Otama, which grew 51 times their normal popula-
tion size during surveys conducted over the peak summer period in 2005/06 (Beca Carter Hollings 
& Ferner Ltd 2007b). Whangapoua experiences the next largest proportional increase, growing 27 
times its usual resident population over summer, followed by Matarangi with 24 times and Cooks 
Beach, Hahei and Pauanui growing 18 times (see Figure 55 for data from a subset of settlements). 

During the latest 2006 census, 10,920 dwellings in the Thames-Coromandel District were unoc-
cupied, which constituted 48% of the 22,700 dwellings in the district. Most of these were holiday 
homes and/or baches, but vacant properties for sale, properties completed but not yet occupied and 
other properties such as “abandoned” dwellings are also included in this figure (Beca Carter Hollings 
& Ferner Ltd 2007b).

Figure 55: Usual population numbers in settlements on Coromandel Peninsula and population numbers during  

the peak summer holiday periods of 2003/04 and 2005/06 (data from Beca Carter Hollings & Ferner Ltd 2007b).

Historically, the west coast of Coromandel Peninsula contained more settlements with a perma-
nently resident population whereas the east coast was characterised by non-resident “holiday 
home” settlements. However, between 1996 and 2006, most growth in the resident population 
and number of dwellings occurred on the eastern side of Coromandel Peninsula, with the western 
side declining slightly (Figure 52 and Figure 53). During the 1990s the northern sub-catchment of the 
Peninsula and Whangamatä were key destinations, followed by the Pauanui-Mercury Bay area and 
to a lesser degree Thames. Growth in the resident population has now shifted to the area behind 
Coromandel township, small pockets of Matarangi Beach, Whitianga Harbour, Tairua and Pauanui 
and Thames south. To a lesser extent, growth in the resident populations has also occurred in inland 
areas of Whitianga Harbour to Tairua, Pauanui to Opoutere and inland behind Whangamatä (Beca 
Carter Hollings & Ferner Ltd 2007b, Figure 52). 

The strong demand for coastal properties has led to the linear sprawl in residential development 
along the coast, with steady increases in the number of dwellings (Figure 56 and Figure 54). Limited 
development is also occurring in areas that were previously untouched due to their isolation and 
steep topography such as Sailors Grave (Beca Carter Hollings & Ferner Ltd 2007b). The Thames-
Coromandel District Plan has a settlement and amenity policy, which aims to keep development 
and growth within the serviced settlements of Thames, Coromandel, Matarangi, Whitianga, Tairua, 
Pauanui and Whangamatä. However, the 2006 census shows that the eastern settlements of Cooks 
Beach, Hahei and Kuaotunu are hotspots for growth in new dwellings (Beca Carter Hollings & Ferner 
Ltd 2007a).
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Figure 56: Change in the number of dwellings in Coromandel settlements between the  

1991 and 2006 censuses (data from Beca Carter Hollings & Ferner Ltd 2007a).

4.10.3 Loss of camping grounds

Camping grounds in the Gulf have been affected by high land prices, the demand for residential 
properties and limited commercial viability. Between 1996 and 2006, 20 camping areas were closed 
in the Auckland and Coromandel regions (which was the greatest loss on a national basis), result-
ing in one third of the total commercial camping capacity of Coromandel Peninsula being lost (DOC 
Heritage Appreciation Unit 2006). 

4.10.4 Overlap between development and outstanding natural landscapes

There is relatively little overlap between coastal development and areas with outstanding natural 
features and/or landscape values, identified by Auckland Council and Waikato Regional Council (Fig-
ure 57). Auckland Council has identified most undeveloped parts of its coastline as having outstand-
ing natural landscape values, whereas the massive volcanic landform of Coromandel Peninsula is the 
most extensive feature identified by Waikato Regional Council. This forms the distinctive backbone 
of the peninsula and is characterised by its bush-clad peaks, pinnacles and rocks. The area is highly 
significant to tängata whenua and has historical values related to goldmining and logging as well. 
However, Waikato Regional Council also recognises the outstanding natural features and landscapes 
of Cathedral Cove, Shakespeare Cliff and coastline south of Hahei. These areas have white silica 
beaches with dramatic cliffs rising to 100 m in places, together with pinnacles, arches, blowholes 
and islands off the coast. The northern tip of Coromandel Peninsula has a combination of pasture 
and bush running out to cliffs and bays. This area has dramatic and vivid coastal features, such as 
pöhutukawa-lined coastal fringe and steep slopes with native forest above and coastal edge below. 
The wild and remote character of this area contributes to its outstanding status too. The coastal 
margin around Tuateawa, on the east coast of Coromandel Peninsula between Waikawau Bay and 
Kennedy Bay, is also recognised for its combination of having a dramatic coastal edge, stony beaches 
and rock reefs, backed by steep slopes with large numbers of pöhutukawa. In addition, this area has 
many historical pä sites (Buckland et al. 2010).
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4.10.5 Strategic considerations for coastal development

1. Coastal development causes significant and cumulative impacts on the ecology and landscapes 
of the coastal environment.

2. Intensive coastal development is a unidirectional change, which reduces opportunities for 
future generations.

3. There are very few mainland bays and beaches in the Auckland Region that do not have any 
form of building development on the surrounding land, whereas around a third of Waikato bays 
and beaches are undeveloped. 

4. Coastal development has increased in many areas since 1996.
5. Coastal development has contributed to the loss of camping opportunities in the Gulf.
6. Pressure to develop coastal areas is likely to increase, particularly for high value and iconic 

beaches such as New Chums (Wainuiototo) and Pakiri which are currently “untouched” or 
minimally developed. 

Figure 57: The location of villages, towns and cities relative to outstanding natural landscapes  

(and also incorporating outstanding natural features in the Waikato Region) identified  

by Auckland Council and Waikato Regional Council. 
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The Hauraki Gulf is an iconic coastal marine ecosystem with high biodiversity that supports a wide 
range of benefits across our society. Considering the research gaps and opportunities, the Hauraki 
Gulf provides an opportunity to envision the future of this ecosystem against a background of cur-
rent and future trends in environmental stressors and the potential to develop a 21st-century capac-
ity for resource management and conservation. Importantly, capturing the intellectual capital of 
the Gulf’s catchment should bring modern techniques of science, engineering and organisation to 
the management of its ecosystems. These developments can provide a unique opportunity to make 
a major advance. By leading the way in nurturing and connecting trans-disciplinary science to eco-
system-based management of the Hauraki Gulf, the Forum could provide a model for New Zealand, 
and in fact for the world, of the implementation of ecological sustainability that fosters economic, 
cultural and environmental restoration. We see enhanced education, valuation and understanding 
of the interconnections within the Hauraki Gulf’s ecosystems and social-ecological system as ben-
eficial for sustainability. Given the growing recognition of human dependence on ecosystems and 
increased attention on the value of ecosystem services, we see it as critical to better describe, quan-
tify and value (ecologically, culturally and economically) the importance and benefits of the goods 
and services provided by the Gulf’s ecosystems and biodiversity.

5.1 Do we know what the issues are?

Any consideration of the threats to the Hauraki Gulf must bear in mind both the legacy of previous 
activities and current stressors as well as look forward to future challenges. The spatial scale, fre-
quency, duration and cumulative effects of impacts are important factors, but any risk assessment, 
resource allocation or remediation needs to be balanced against spatial variation in the value and use 
of the Gulf’s ecosystems and catchments. Sections 3 and 4 of this report identify key environmental 
issues and important emerging concerns in order to frame a number of key scientific challenges.

Many issues are identified in this report and while researchers and managers have made progress 
in addressing key concerns, our brief is to focus on current gaps and opportunities. The list of prior-
ity issues will expand in the near future with the reality of climate change impacts, the potential for 
finfish aquaculture, power generation, mineral extraction and emerging contaminants. While man-
agement should consider each issue in terms of the extent of the threat and potential to change the 
Gulf’s ecosystems, from a scientific perspective we focus on trying to identify strategic issues where 
new knowledge and technology informs management across multiple matters to improve conserva-
tion and sustainability goals.

At a workshop involving researchers (NIWA and University of Auckland) and resource managers 
(Auckland Council, Waikato Regional Council, MFish, DOC) held at NIWA’s Auckland office (3 March 
2011) a range of threats that face the Gulf was discussed and from this we identified the following 
critical issues:

 – The Gulf functions as a connected whole with links to the land and human activities. Managing 
this interrelated system is an ongoing process requiring understanding, information and 
modelling.

 – The ecosystem goods and services provided by the Gulf and catchment are under pressure. The 
underpinning bases of these goods and services need to be identified, managed and improved.

 – There has been a decline in the quality of some habitats, and declines in the abundance of 
fish, crayfish and shellfish. Restoration of habitats and populations to increase abundance and 
ecosystem resilience needs to be investigated. 
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Some specific concerns are:
 – pressure on commercially, culturally and recreationally important exploited species and the 

ecosystem consequences of changes in size and age structure of these populations; 
 – loss of biogenic (living) habitats and changes in habitat diversity as a result of bottom 

disturbance by commercial and recreational fishing, and reduced water quality;
 – sediment impacts as a result of both current and historical land use;
 – nutrient loads particularly in the Firth of Thames, but not excluding other more localised issues;
 – non-point source urban contaminants;
 – invasive species; and
 – human pathogens.

To some extent, we understand how to link these threats to ecosystem responses. However, exam-
ples exist of ecosystem-wide responses where we are unable to specify the underlying mechanism 
driving that response. For example:

 – Toxic algae blooms were first recorded in the 1980s.
 – A series of mass mortalities has also been recorded including the largest mass mortality ever 

documented, both in terms of the number of fish and the geographic range affected (pilchards 
in 1995). Other mass die-offs have been reported for scallops, cockles (Ecklonia) and kina. 

 – Toxic sea slugs on our beaches have been reported in the news media in recent years.

In some cases, these ecosystem responses may appear to have increased because they are now being 
monitored or reported by the general public.

The key issues for the Gulf are well known. The State of the Environment reports produced in 
2004 and 2008 highlighted significant gaps in our knowledge and ability to assess the state of the 
Gulf environment (Hauraki Gulf Forum 2004, 2008a). In 2009, the Hauraki Gulf Forum published 
Governing the Gulf: Giving effect to the Hauraki Gulf Marine Park Act through Policies and Plans (Hau-
raki Gulf Forum 2009), which summarised the findings of State of the Environment reports produced 
in 2004 and 2008, noting:

“Human activities have had a profound impact on the natural environment of the Gulf. This is 
described in detail in the two recent Hauraki Gulf State of the Environment reports prepared by the 
Hauraki Gulf Forum (Hauraki Gulf Forum 2004 and 2008a). Some of the more significant impacts on 
the coastal marine area have resulted from contaminants from land ending up in rivers and ground-
water and ultimately in the sea. Sedimentation is one of the most pervasive problems in the Gulf 
impacting on many estuaries and harbours. Earthworks, forestry and farming all contribute to the 
problem. Heavy-metal contamination, nitrogen enrichment and microbial pollution also negatively 
impact on the coastal marine area, but occur at a more localised scale.

Urban and rural-residential development is having a major impact on the natural character and 
landscapes of the Gulf by replacing natural features with built structures. It is also resulting in the 
loss of cultural heritage, through the destruction of archaeological sites. The main pressures are on 
the coastline of the Auckland Region but also along the east coast of Coromandel Peninsula.

Within the coastal marine area, the harvesting of fish and shellfish has reduced many stocks to 
a small proportion of their original quantity. More insidious is the degradation of ecosystems and 
marine habitats which has resulted from the cumulative effects of fishing activity, land-sourced 
sedimentation and pollution and physical changes to the seabed from dredging and trawling activi-
ties, reclamation and other construction works. This is of particular concern as it is the health of 
these habitats and ecosystems which underpin the productivity of the Gulf’s coastal marine area 
and support the wildlife and people that depend on it.

The effects of climate change are likely to place further stress on marine systems. Warmer tem-
peratures will provide more viable habitats for subtropical and tropical organisms, some of which 
could become invasive. Increased rainfall and storminess may result in greater levels of sedimenta-
tion. Increasing acidity of seawater caused by rising levels of CO2 may negatively affect shellfish. And 
rising sea-levels will increase ’coastal squeeze’ as the natural foreshore moves landwards and comes 
up against a wall of artificial coastal structures.”
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From the above, it is clear that defining the current threats facing the Gulf is not an information gap, 
at least in broad terms. What we are missing is a framework for understanding how the Gulf’s eco-
systems respond to these and future threats and translating this understanding to inform effective 
management and societal responses. Governing the Gulf (Hauraki Gulf Forum 2009) analysed the 
purposes and management objectives of the Hauraki Gulf Marine Park Act, highlighting some spe-
cial attributes that should foster a more proactive and integrative management framework:

 – It is the interrelationships between the Gulf’s coastal area, its catchments and islands which 
create its nationally significant qualities.

 – The nature of the marine environment is dynamic, where individual elements are linked within 
complex webs.

 – There is a very strong marine focus to the legislation.
 – Sustaining the life-supporting capacity of the Gulf should be the focus for management efforts, 

rather than how to allocate the Gulf’s resources between competing users. 

It is also worth noting that the Hauraki Gulf is an important test case for the Government’s vision 
for fisheries, as articulated in Fisheries 2030. This document seeks to see fisheries resources used in 
a manner that provides greatest overall economic, social and cultural benefit whilst preserving the 
capacity and integrity of the aquatic environment, habitats and species, including that:

 – Biodiversity and the function of ecological systems, including trophic linkages, are conserved.
 – Habitats of special significance to fisheries are protected.
 – Adverse effects on protected species are reduced or avoided.
 – Impacts, including cumulative impacts, of activities on land, air or water are restricted.
 – Ecosystems are addressed.

In light of this, we propose an ecosystem-based management approach to foster and focus research 
and to put existing and new knowledge to work to fulfil the goals of the Hauraki Gulf Marine Park 
Act. We also identify that, in the medium term, predictive process-based models have a contribution 
to make in capturing our state of knowledge, identifying knowledge gaps and providing an effective 
interface between science and management. Environmental research is undertaken in the Gulf for 
a variety of different purposes and is supported by a range of agencies. A focus on ecosystem-based 
management, including modelling, would place the Hauraki Gulf Forum in a strategic role for clos-
ing key gaps, and integrating and synthesising knowledge. The key objective is to build on an under-
standing of the critical elements, linkages and dynamics of the Gulf system, and develop a predictive 
ability to detect changes in the capacity of the system to support life and deliver societal benefits.

5.2  Ecosystem-based management as 
an organising principle

Sustainability means different things to different people, and this can cause confusion and mis-
direction of management actions. From the perspective of ecosystems’ science, sustainability and 
sustainable management require a broad view integrating historical, current and future ecosystem 
responses to human and natural changes. To achieve this, it is necessary to implement ecosystem-
based approaches to management. Ecosystem-based management should seek to balance the 
needs and values of different sectors of society in an inclusive fashion, rather than focus on the 
delivery of benefit to specific resource users. Explicitly it focuses on the sustainability of ecosystem 
structures and processes necessary to deliver goods and services.

From the perspective of ecological science, sustainable ecosystem management should include:
 – long-term ecological sustainability as a fundamental value;
 – clear operational goals;
 – sound models providing an understanding of complexity and interconnectedness;
 – recognition of the dynamic character of ecosystems;
 – attention to context and scale;
 – acknowledgment of humans as ecosystem components; and
 – a commitment to adaptability and accountability.
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These issues have important implications across the scientific process, from framing questions, 
gathering and interpreting data, developing models, recognising the value of understanding and 
ultimately to forecasting ecosystem responses. Particularly within an ecosystem-based manage-
ment context, it is important to consider the following: 

a. adaptive management; 
b. the potential for interaction between stressors increases as we move from the detection of 

immediate stressor effects to broader consequences on ecosystem function and changes in 
ecosystem services; 

c. whether current and historical stressors and future changes will lead to slow degradative 
change in a specific ecosystem, which is potentially easy to restore, or to drastic “regime 
shifts” that markedly change the potential of ecosystems to deliver a diversity of services 
from which restoration of services will be very difficult. 

5.3  Why should we care? The bridging 
role of ecosystem services

It is all too easy to stop an assessment of research gaps at an assessment of threats, but from an 
ecosystem perspective, it is imperative we also consider how the ecosystem may respond to change, 
and how the management options may favourably shift the benefits and values we derive, either 
actively or passively, from the Hauraki Gulf. 

Ecosystem services derived from the coastal ecosystems can be broadly categorised to include: 
 – production and quality of food resources; 
 – shoreline protection; 
 – climate change mitigation; 
 – nutrient cycling; 
 – contaminant processing;
 – sediment stability and creation; 
 – resilience and biodiversity;
 – mitigation of harmful algal blooms; 
 – supporting science and education;
 – underpinning natural aesthetic values;
 – boosting tourism;
 – strengthening amenity values;
 – energy;
 – transport and navigation;
 – leisure and recreation;
 – fostering cultural values.

These services are generated by a diverse array of ecosystem functions. The recognition of the value 
of these functions involves linking ecosystem function to service and societal values. Recent research 
conducted by Auckland Council, in partnership with NIWA’s Coasts and Oceans outcome-based 
investment programme, reveals the potential for complex and indirect interactions between natural 
and human-induced drivers, and the feedbacks between ecosystem pressures and responses. A key 
science challenge is addressing the complexity of mechanisms that connect ecosystem function to 
service, the limits of our current understanding of these processes and of how they are affected by 
different external drivers. Progress in this area is possible and essential, as many of the directives to 
which resource managers must respond are clearly linked to the maintenance of ecosystem function 
and the concomitant services. In effect, this expanding area of ecosystem service research should be 
developed into a tool for contrasting how scenarios of different management actions could affect 
the ecosystem and the multifaceted benefits derived from it by society. 
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5.4 Key research themes

In this section, we identify key integrative questions and offer advice on how it would be possible 
to move forward with defining environmental status and targets and the more holistic issues of 
ecosystem-based management and sustainability. Perhaps more than any other coastal ecosystem 
in New Zealand, there is an extensive multidisciplinary research and monitoring base for compo-
nents of the Hauraki Gulf. The region’s universities, NIWA and other research providers provide fun-
damental and strategic environmental research to support applied work by regional councils, MFish 
and DOC. Our analysis of gaps and opportunities builds on this knowledge and technology platform, 
seeking to maximise benefit and minimise duplication. Within a framework of conducting and inter-
preting credible science to underpin management, conservation and stewardship of the Hauraki 
Gulf, we have identified eight key interdependent research themes and key questions that we must 
address to fill major gaps.

As previously noted, the key issues are well known and there is a substantive body of scientific 
expertise and relevant scientific information generated specifically from the Gulf or available in the 
international scientific literature to inform management. We are already putting our current knowl-
edge to good use. For example, the effects of habitat disturbance by trawl and dredge fisheries in 
the Gulf have been described and the marine reserve at Leigh had highlighted important ecological 
changes associated with the loss of large predatory organisms, like snapper and crayfish. Sophisti-
cated risk assessment models have been used to link changes in land use to the threat of sediment 
deposition in different estuarine and coastal habitats and to forecasting the immediate ecological 
consequences of that disturbance. We have resource inventories and habitat maps of some of the 
Gulf’s estuaries and harbours and extensive survey of shallow-water coastal reefs. We also have 
numerical models of water, nutrient and phytoplankton dynamics to inform our understanding of 
land and ocean-forcing of primary production in the Gulf’s waters and to help better plan spatial 
allocation for aquaculture. 

In building on the substantive body of knowledge and the good working relationships between 
researchers and managers, it is important to remember that the Hauraki Gulf Marine Park Act has 
some special attributes. The intention of the Act is to foster a more proactive and integrative man-
agement framework, with a focus on interrelationships between places and process to sustain the 
life-supporting capacity of the Gulf, rather than on how to allocate the Gulf’s resources between 
competing users. Sustaining the ”life-supporting capacity” requires that we understand resilience 
and ecosystem functioning and are able to link environmental change to ecosystem futures. These 
are the major challenges we must address.

Ecosystem functions and services 
Key questions:

 – What are the key ecosystem services that support the values of the Hauraki Gulf?
 – What ecosystem functions are critical in supporting those services?
 – How is the functional performance of these Gulf ecosystems changed by major stressors?
 – How can we effectively map the potential for service delivery around the Hauraki Gulf to 

prioritise areas/habitats and management actions?
 – What mechanisms are appropriate to link ecosystem services to societal values and improve 

recognition of the benefits we derive from the Hauraki Gulf?

Resource mapping
Key questions:

 – Can we map key biogenic habitats that potentially play important roles in ecosystem function 
or resource sustainability (e.g. in the outer Gulf subtidal environments, > 10 m soft-sediment 
and > 30 m rocky reef)?

 – What are key pathways for connectivity within the Hauraki Gulf ecosystem and across its 
boundaries, in terms of the movement of organisms, fluxes of energy and matter?

 – How is the proportion of key biogenic habitats changing over time?
 – Can we develop a robust habitat classification scheme for the Gulf that defines and classifies 

habitats in an ecologically meaningful and robust way?
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Indicators of change
Key questions:

 – What are the most important indicators to assess the status and trends of the Gulf  
against appropriate baselines?

 – What are the biologically important levels for threshold effects of nutrients, sediments  
and pollutants? 

 – How do we integrate different indicators associated with biological, physico-chemical  
and hydrodynamic measures of environmental quality with societal values?

 – What new technologies can be developed to improve monitoring of the Gulf?
 – Is the frequency of Harmful Algal Blooms increasing and if so, how do blooms relate to 

environmental drivers such as nutrient loading or sea-floor sediment characteristics?
 – What is the Harmful Algal Bloom risk to specific use (e.g. swimming, sailing or aquaculture)?
 – What are the ecological threats posed by invasive species and what are the management 

options that allow a fast response to limit their spread?
 – Can veterinary forensics be combined with environmental monitoring data to explain  

mass mortality events?

Ecosystem resilience
Key questions:

 – Can we identify potential tipping points in resource use or ecosystem response to stress?
 – Can we improve our ability to demonstrate the risk of cumulative effects and identify  

multiple stressors that deplete resources and restrict ecosystem performance?
 – Once status is assessed, how do we prioritise areas for restoration and rehabilitation?
 – How do we effectively restore degraded marine habitats? 
 – What management actions are needed to increase the adaptive capacity of the Gulf’s 

ecosystems (e.g. to change in nutrient inputs, climate change)?

Conservation
Key questions:

 – What are the ecosystem services of marine-protected areas (MPAs) that add to our 
understanding and management of the life-sustaining capacity of the Gulf?

 – Is the current network of MPAs effective at conserving the Gulf’s biodiversity?
 – How are broad-scale changes in the Gulf’s ecosystem affecting endangered species and sites 

(e.g. Ramsar site in the Firth of Thames; shark nursery grounds and teleost fish spawning 
grounds, key habitats and migrations pathways)?

 – How do we maximise the social and economic benefits from conservation?
 – How are terrestrial conservation areas (e.g. mainland and island reserves) linked to the  

adjacent marine environment?

Resource sustainability
Key questions:

 – What are the consequences of exploitation on the resilience of the stock and the broader 
ecosystem?

 – What are the consequences for exploited resources of natural or anthropogenic perturbations?
 – What role do exploited species play in ecosystem functioning and how has exploitation 

modified functional performance (e.g. the population dynamics of harvested animals, their  
prey and competitors)?

 – What management options are there to allow exploitation but maintain ecosystem functions?
 – How does aquaculture influence ecosystem process (e.g. sources and sinks for nutrients, 

suspended sediment) or the movement of organisms (e.g. pelagic larvae, microbes, parasites, 
megafaunal migrations)?

 – How do the costs of ecosystem services and functions compare to the cost-benefits from  
the use of ecosystem resources, including commercial and recreational take?

 – How does the connectivity of exploited species across the Gulf (e.g. larval and post-larval 
transport/movement) and associated sources and sinks affect population stability/resilience/
productivity, in the face of human disturbance?
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Modelling
While models are tools rather than thematic issues, we recognise their value in heuristics, commu-
nication, prediction and forecasting. Many models are already available and others are ”in progress”. 
We acknowledge that any model must be fit-for-purpose. From the Hauraki Gulf Forum perspective, 
these are potentially essential tools for integration and consideration of the environmental future 
options for the Gulf’s ecosystems.
Key requirements:

 – Hydrodynamic models to address questions at a range of spatial and temporal scales and  
assess the connectedness of areas based on water flow.

 – Models of the sources, sinks and dynamics of contaminants, nutrients and sediments 
(particularly suspended sediments).

 – Geomorphological models resolving the physical variability and dynamics of the seabed, 
including the coastal fringe, to examine habitat stability and linkages to ecological transitions.

 – Coastal hazards risk and mitigation models.
 – Ecological connectivity models based on the dispersal of specific species or relationships 

between regional and local species’ pools.
 – Morphological models that capture the linkages between oceanographic, ecological and 

substrate dynamics at a range of temporal scales relevant to management.
 – Ecosystem modelling of trophic relationships, community dynamics and exploited populations.
 – Model testing and validation is seen as an essential component of all model building.

Social science
Key questions:

 – Is society getting the best environmental, social and economic return on the resources  
of the Gulf?

 – How do we create effective institutional structures and connections to assimilate knowledge 
and translate it into management action?

 – How do we balance short-term and more certain benefits with long-term and less-certain 
benefits?

 – How do we develop adaptive frameworks to feed information on status and trends back to the 
efficacy of management actions and policy?

 – How do we provide opportunities for community based research, which integrates marine and 
freshwater linkages (e.g. through community programmes to track the status and trajectory  
of native fish populations)? 

 – Can we define acceptable and unacceptable environmental futures for the Gulf that can help 
define the key processes and ecosystem functions that need wise management?

 – How do we raise/heighten public understanding of the importance of the Hauraki Gulf and  
the integrated nature of the ecosystem?

5.5 Synthesis and integration

We consider this aspect to be a major focus for the Hauraki Gulf Forum. Individual research and 
monitoring agendas within the Hauraki Gulf area are set by a variety of needs and interests. Synthe-
sis and integration of new knowledge and technologies to expand on the wise management of the 
Hauraki Gulf within an ecosystem-based management framework is a critical task. 

This process will require definition of different systems and their connections; an analysis of 
sources and sinks, flows and stocks. For example, science makes assumptions to advance our under-
standing and represent the biogeophysical/chemical/ecological/social processes in models. Many of 
these processes are complex and poorly understood. As a result, placing bounds on uncertainties is 
extremely difficult, particularly in a context when the inputs are not quantified exactly. One way to 
address this issue is to run multiple models so that inter-comparison of model results linked to criti-
cal assessment by field measurements provides information on the spread of possible predictions. 
Such parallel model developments are a useful foundation for adaptive management under uncer-
tainty and for future sustainability assessments, and are a mechanism for ensuring that a diversity 
of models continues to be developed. In addition, we propose a data management strategy to ensure 
that the benefit of the legacy of the research is maximised. Such a management strategy will quan-
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tify what is known, highlight data gaps and make data publicly available online. This would include 
maps of resources (e.g. fish stocks), habitats, management areas (e.g. marine reserves, cable zones), 
shipping lanes, marinas, harbours, freshwater inputs, contaminant distributions, water quality, sci-
entific literature, species inventory, human population distribution, recreational activities (types, 
locations, pressures) and trends in this data over time. The database can then be used as a platform 
to promote collaboration amongst researchers and minimise disconnected research activities. A key 
aim is to ensure that, once new research findings or management actions emerge, the public can 
see the evidence behind these on the database website. Models of such databases already exist in 
NIWA, Auckland Council, DOC and Land Information New Zealand (Oceans 2020). A key issue will be 
ensuring the quality of information stored on the database. However, this data management strat-
egy should also support public dissemination of fact and knowledge and be a visible product of the 
research supporting the Hauraki Gulf Forum.

To support these actions we recommend the following specific practical steps:
1. The development of a technical working group of key resource managers and scientific experts 

to assist with the translation of scientific knowledge and encourage relevant and rigorous 
science. An essential feature of the group will to provide feedback to the Hauraki Gulf Forum 
on ecosystem-based management and assess, improve and update the modelling/monitoring/
mapping and environmental understanding as research advances. Such a working group should 
be empowered to commission reviews on, for example, the current research programmes 
related to the Gulf or analysis of knowledge management practices to ensure information  
is shared between agencies to support integrated management. 

2. Use the technical advisory group to fill the gaps and recommend specific research topics for 
support by the Hauraki Gulf Forum.

3. Identify key synergies in current research initiatives and build on these, particularly in terms  
of integration.

4. Recognise educational opportunities that foster better understanding in society of the value  
of the Gulf and credible scientific research to manage and restore it.

5. Improve research networks to allow trans-disciplinary research on the Gulf’s socio-ecological 
systems to develop.

6. Build a comprehensive and quality-controlled database to provide public transparency regarding 
the underlying research and the state of the environment and the Gulf’s resources.

5.6 Summary recommendations of core knowledge needs

Because of its political visibility and economic importance, there is tremendous opportunity for the 
Hauraki Gulf to be a flagship for ecological sustainability. Although sustainability is a common policy 
and management goal, the application of ecosystem-based approaches to management are still in 
their infancy. Much is known about the Hauraki Gulf ecosystem; this provides a good platform for 
further research and the development of management strategies focused on aspirations of the Hau-
raki Gulf Marine Park Act. Although there remain knowledge gaps and uncertainties, management 
actions that ensure the resilience of these ecosystems are imperative. Further, we see enhanced 
education, valuation and understanding of the interconnections within the Hauraki Gulf’s social-
ecological system as beneficial for sustainability. 
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Core knowledge needs for sustaining the life-supporting capacity  
of the Gulf’s resources and ecosystems

As recognised by the Hauraki Gulf Marine Park Act, management of the Gulf requires a focus on sys-
tems rather than discrete elements. The Gulf is interconnected, so too should be the science. Here we 
present five core knowledge needs to act as both focus and nexus for research. The research needed 
for the Gulf must be rigorous and of a high quality if it is to help in moving from policy and planning 
to effective action. 

Core knowledge 1:

Mapping and classifying the Hauraki Gulf’s ecosystems and defining its status

We have good information on some of the estuarine and shallow-reef habitats, but the broader gulf is poorly 
described in terms of biogenic (living) environments. This information is needed to underpin stewardship and 
assess trends in relation to human activity (both impact and restoration). This lack of knowledge fundamentally 
constrains our ability to implement spatially explicit management. We have a number of indicators of ecosystem 
health and integrity for some habitats in the Gulf, but these need to be extended to define the status and 
trends of the Gulf in a way that is both scientifically defensible and suitable for public dissemination.

Core knowledge 2:

Defining the ecological infrastructure of the Hauraki Gulf

At the foundation of the Hauraki Gulf Marine Park Act is “sustaining the capacity of the system”. This requires 
that we determine the major ecosystem functions, their relationship to specific habitats and the connectivity 
between habitats. Ecosystem functions define how the system works and responds to change. Many key functions 
ultimately underpin the broad range of benefits we derive from the Gulf. We think the focus here should be 
on maintaining biodiversity, nutrient and carbon recycling, sediment stability, nursery habitats for exploited 
species and productivity through the food webs. Developing new knowledge of ecological functions is essential 
if we are to maintain the adaptive capacity and define the limits to the resilience of the Gulf’s ecosystems.

Core knowledge 3:

Getting the best return on resource exploitation

The exploitation of resources has been an important element in the Gulf, but now our growing knowledge 
of coastal ecosystems and how they are changed by fishing should be used to test new approaches to 
managing fisheries that addresses the unintended consequences on the Gulf’s ecosystems. A case study 
for adaptive management, with a strong focus on spatial management, would provide a much-needed 
broad-scale test of how we move forward in placing fisheries into an ecosystem context. This would build 
on previous research and the precedent of spatially explicit fisheries regulations for the Gulf.

Core knowledge 4:

Defining the interrelationships between land and sea

The Hauraki Gulf Marine Park Act focuses on connectivity. How the land affects the coast is of major importance, 
historically, now and into the future. Key issues are soil loss and the run-off of contaminants particularly from our 
increasingly urbanised landscape. We know much of the localised and immediate impacts of sediment deposition 
associated with changes in land used but we must address the much broader effects of changes in suspended sediment 
concentrations on organisms living on the seabed and within the water column. We must gain a better understanding 
of multiple stressor effects associated with land-derived sediments. For example, as the sediments in our estuaries and 
coasts become muddier, this shifts the distribution patterns of important species and amplifies the stresses associated 
with urban run-off. As the sediments in the Gulf become muddier and waters more turbid this will change how organic 
matter is recycled and processed by the seabed and potentially predisposing the ecosystem to the effects of eutrophication. 
Understanding such multiple stressor effects is critical for setting limits to contaminant loads. Not all the interaction 
between stressors is bad; the recovery of parts of the Manukau from high contaminant concentrations is in part mediated 
by the burial of dirty sediments, and the eutrophication threat in the Firth of Thames is mitigated by high turbidity. 

Core knowledge 5:

Adapting to the future

What will the Gulf look like in 50 years’ time? There are many uncertainties, but climate change will be an 
important influence. While eutrophication is not a major threat to the Gulf as a whole, future activities may 
change or reprioritise threats. In particular, we need to consider how the broad systemic changes observed in 
the Gulf such as Harmful Algal Blooms, mass mortalities and invasive species could be facilitated by climate-
induced changes in oceanographic and land run-off. Key to adapting to the future is the ability to define realistic 
alternatives and for this we need to develop a range of models to inform learning and decision-making.
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6.  
 
Tāngata Whenua
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This chapter discusses:
 – how tängata whenua’s values and practices are recognised in the Hauraki Gulf Marine Park Act;
 – agency roles, and the statutes they implement;
 – the effects of Treaty settlements;
 – the role of iwi planning documents;
 – options for agency responses; and
 – further development

Two case studies are provided to illustrate the issues raised.

6.1 The Hauraki Gulf – Tikapa Moana context

The Hauraki Gulf Marine Park Act provides direction within its jurisdiction for public agencies acting 
under of a number of statutes. During the last three years, publications of the Forum have clarified 
the nature of how those obligations under the Act should be implemented (Hauraki Gulf Forum 
2009, 2010a, 2010b). 

Governing the Gulf (Hauraki Gulf Forum 2009) lists examples of the nature of provision for tängata 
whenua under the Act. These can be summarised as:

 – Historical associations can be provided for by: interpreting landscapes in terms of pre-European 
history; ensuring correct place names are used; appropriately managing Mäori archaeological 
landscapes; and providing for tängata whenua-specific uses.

 – Traditional associations can be provided for by protecting traditional resources (e.g. for weaving 
and medicinal purposes); identifying and protecting traditional walking routes, moorings etc; 
identifying and protecting traditional landmarks; supporting and enforcing rähui (bans); and 
enabling päpa käinga (ancestral settlement) development. 

 – Cultural associations can be provided for recognising the whakapapa (geneology) of people 
within the natural world and appropriately implementing cultural practices and values such  
as whanaungatanga (relationship) and kaitiakitanga (guardianship).

 – Spiritual associations can be provided for by: acknowledging Mäori’s spiritual dimensions of 
the natural world, and ensuring environmental management is sensitive to those values; and 
seeking means of ensuring concepts such as mauri (life principle) are appropriately included  
in policies and practices. 

The centrality of integrated management in the role of the Forum and the purpose of the Hauraki 
Gulf Marine Park Act is consistent in principle with kaitiakitanga (Volkerling 200718). Provisions for the 
four types of tängata whenua associations above, which are derived from the statutory objectives 
in Section 8 of the Act, can contribute to integrated management and exercising of kaitiakitanga.

6.2 Implementation

The objectives of the Hauraki Gulf Marine Park Act are achieved through actions of those public 
agencies with responsibilities under this Act. These agencies can all contribute to provision of the 
tängata whenua associations. The principal agencies and statutes are:

 – DOC is responsible for conservation management under the Conservation Act, and has 
statutory roles in the Coastal Marine Area under the Resource Management Act (RMA).

 – Councils have responsibilities principally under the RMA and the Local Government Act.
 – MFish has responsibilities under the Fisheries Act. The Ministry also has responsibilities for  

the fisheries and aquaculture Treaty settlements.

18 The research paper Kaitiakitanga and Integrated Management was received by the Hauraki Gulf Forum on 30 March 2007, and adopted for use “to 
inform future Forum projects, activities and actions”. See www.arc.govt.nz/albany/index.cfm?2137E2E7-145E-173C-9818-94058B87C940
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All these agencies and statutes have importance in implementation of the Hauraki Gulf Marine Park 
Act, but the role of the councils under the RMA is the most significant.

6.3 Treaty settlements

Treaty settlements for iwi in the Auckland and Waikato regions are at various stages. Some settle-
ments have been concluded, such as Ngäti Whätua ki Orakei. Others have been through a Waitangi 
Tribunal process and are now in a negotiation stage. Others are in direct negotiation without having 
gone to the Tribunal.

The settlement process and its results have several aspects:
 – The research, mandating and negotiating processes can lead to greater understanding  

of identity.
 – Land can be transferred as a settlement asset.
 – The financial settlement leads to an increased asset base and income stream. This can be used 

to develop capacity to exercise kaitiakitanga.
 – Formal relationships with statutory agencies can be determined through the settlement 

legislation. These can include Memoranda of Understanding and co-management over land  
or resources.

 – Statutory acknowledgments in settlement legislation requirements for public agencies, such  
as for consultation.

 – Cultural redress provisions can be negotiated to address a range of issues, including some 
of those above. Cultural redress provisions have varied in effectiveness in settlements. The 
Waikato River provisions represent a high benchmark for cultural redress in future settlements.19

As settlements progress to finality and the entities which receive settlement assets increase their 
capacity for response, greater effectiveness in exercising kaitiakitanga can be anticipated.

6.4 Iwi planning documents

“One way in which tängata whenua can proactively encourage the implementation of the spirit 
of the Hauraki Gulf Marine Park Act is through the preparation of iwi planning documents which 
address the above issues. These documents can serve to influence the content of RMA policies and 
plans through the requirement in sections 61(2A), 66(2A) and 74(2A) of the RMA that councils ‘take 
into account’ any relevant planning document recognised by an iwi authority and lodged with the 
council.”20 

Iwi planning documents can address a wide range of environmental issues from a tängata 
whenua perspective, such as the Hauraki Mäori Trust Board’s comprehensive plan; or they can 
be focused on specific issues, such as the Ngätiwai Aquaculture Management Plan. Future devel-
opment in iwi planning documents can be expected. They can address issues such as reviews of 
regional planning statements. Development of spatial planning could also be informed by future iwi 
planning documents.21

19. For instance, the settlement provides a co-management arrangement. Elements of the settlement have the status of a Regional Policy 
Statement, and must be given effect in RMA planning instruments. 
20. Governing the Gulf (Hauraki Gulf Forum 2009) page 71 
21. Iwi planning documents currently lodged with councils in the Gulf catchment include: 
– 1991 Ngäti Te Ata Tribal Policy Statement; 
– 1995 Ngätiwai Policy Statement on kiore management 
– 1995 Te Kawerau a Maki Resource Management Statement; 
– 1996 Ngäti Paoa Resource Management Plan; 
– 2003 Hauraki Customary Fisheries Strategy; 
– 2004 Hauraki Mäori Trust Board Environmental Plan; 
– 2007 Ngätiwai Iwi Environmental Policy; and 
– 2007 Waikato Iwi Management Plan.
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6.5 Agency responsiveness

Agencies can contribute to the ways in which support for the maintenance and enhancement of the 
types of associations identified in Governing the Gulf (Hauraki Gulf Forum 2009) can be provided for. 
Some examples of the type of need for support include the following.

Historic
 – Landscape planning methodologies should recognise pre-European and tängata whenua  

values and references.
 – Landscape planning guidelines produced by the Environmental Defence Society have 

addressed these issues, but there has been limited subsequent implementation.
 – Historic occupancies should be recognised by signage and other means.

 – For example, the Omaha Beach area is now developed as residential subdivision. The area 
was an important meeting place for hapü from all of Ngätiwai. No Mäori land remains  
in this area, but the historic occupation is of traditional importance.

 – Appropriate traditional place names should be in all official usages.
 – Names of islands such as Aotea (Great Barrier) and Hauturu (Little Barrier) should be  

recognised. Both DOC and local government are increasingly including these traditional 
names in their documentation.

 – Traditional names of all maunga (mountains) should be recognised, such as Takarunga  
for Mount Victoria.

 – Effective management of impacts on Mäori archaeological sites and landscapes needs to  
be developed.

 – The Auckland City Cultural Heritage Index needs to maintained, and a similar initiative 
should be developed for the Waikato Region.

 – Planning instruments need to include provisions which are effective for heritage  
management of Mäori sites and landscapes.

Traditional
 – The distinctive nature of traditional resources needs to be identified, and appropriate 

management provided in planning instruments.
 – For instance korari (flax), as the species Phormium tenax, has no protected status.  

However, within the species there are important categories of flax which are not biologically 
recognised and can be locally scarce. Important for weaving use is muka, a flax with strong 
fibres. If this is not protected and recognised at localities, an important weaving resource 
can be lost.

 – Manu oi (mutton birds) are of importance to tängata whenua. The current programme  
to re-establish manu oi at locations is of importance in this context.

 – The Ngätiwai protocol with DOC enables the recovery of whale bone from stranded whales.
 – Traditional communication linkages can be identified.

 – Traditional walking tracks and waka moorings can be recognised on DOC maps, and in  
planning instrument maps.

 – Signage can be provided to identify these locations.
 – Rähui can be recognised and supported.

 – MFish can establish formal protocols with iwi (tribes) and hapü (subtribes) for support  
and enforcement of rähui.
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 – Allocation processes can be informed by traditional methods. Allocation of resources to 
competing users is a complex issue which is not easily addressed under the RMA. An increasing 
number of resources, including fresh water and aquaculture space, need to be allocated 
between competing users.

 – Tohatoha is a traditional process for sharing and distributing resources. This kaupapa  
(subject) can be investigated as to how it can inform allocation processes in a culturally 
appropriate way.

 – Päpa kainga development can be supported. In remnant Mäori land, or on land returned 
through settlement processes, there is a need for RMA planning specific to its needs.

 – While some councils have mechanisms to support päpakainga development, specific  
planning provision is rare.

 – RMA Section 33 transfers of power in terms of planning on päpa kainga could be  
structured to meet both the tängata whenua and council needs.

Cultural
 – Kaitiakitanga (guardianship) and mätauranga (knowledge) can effectively inform 

environmental management.
 – While there is frequently reference to kaitiakitanga, and to an extent to mätauranga, actual 

programmes to implement their consequences are infrequent.
 – The Forum has adopted in principle that integrated management should include the  

methodology of kaitiakitanga, but this has not often been followed through by the Forum’s 
constituents in their actions.

 – Acknowledgment of the Mäori view of the natural world, with people included in that world 
through whakapapa.

 – Much environmental management considers people and the natural world, rather than  
people in the natural world.

 – Many policies, and some statutes, maintain this separation. An example is the Marine 
Reserves Act in which permanent prohibitions on any harvest is established. This is contrary 
to the concept of a rähui, which is open to reconsideration when conditions change.

Spiritual
 – Environmental management needs to provide for the values and concepts of kaitiakitanga 

which are based on spiritual dimensions of the natural world.
 – Planning instruments often refer to mauri, but then provide for it only in terms of high 

environmental standards. For instance, the mauri of fresh water is provided for by address-
ing contaminants, sedimentation and other impacts. While those factors are necessary for 
maintenance of mauri, they are not sufficient, and mauri itself requires further responses. 

6.6 Further development

The analysis above of the response to the types of associations included in the Hauraki Gulf Marine 
Park Act is informal, as no indicators of the extent to which there has been effective delivery by  
public agencies is yet to be developed. The analysis can provide a basis for how those indicators  
can be developed, and also a basis for a range of possible programmes and projects to ensure  
appropriate response.

Development of a set of response indicators will need to address a range of issues:
 – Agreement on the nature of the indicators will require further discussion and development.  

This is both on the nature of the indicators and the relative priority within the indicator set.
 – Development of a means of collating data to inform the indicators will need to reflect the 

priorities established, and the resourcing constraints involved.
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6.7  Strategic considerations for responding 
to tāngata whenua values

1. Providing for the historical, traditional, cultural and spiritual associations of tängata whenua, as 
required by the Hauraki Gulf Marine Park Act, will require agencies to develop new programmes 
with new approaches which are based on the appropriate tikanga (custom) and kawa 
(protocol).

2. If agencies are to develop a management approach which integrates kaitiakitanga effectively, 
changes in methodologies used and increasing capacity to respond to tängata whenua 
appropriately are essential.

3. Indicators which measure the response of agencies to the provision for the tängata whenua 
associations, as required by the Hauraki Gulf Marine Park Act, need to be developed.

6.8  Case Study 1: Tāmaki River  
(invited contribution by Moana Tamaariki-Pohe)

A traditional name for the Tämaki River is Waimokoia, which refers to “a place of assembly for mutual 
protection”. Auckland is traditionally known as Tämaki Makaurau, meaning “Tämaki, desired by 
many”. Tämaki has been highly sought after and occupied by many, just as it is in contemporary 
times. 

At the time of the Great Migration, Taikehu of the ancestral Tainui waka was the first to sight 
the Tämaki River while standing on the summit of Takarunga (now known as Mount Victoria). Just 
beyond the river he saw the expansive Manukau Harbour, and thereby discovered the shortest por-
tage between the east and west coast of Te-Ika-a-Mäui (the North Island). The waka sailed the Wait-
ematä and into the southern reaches of the Tämaki River. The great Tainui waka was then beached 
and dragged two kilometres overland, across the Otahuhu Portage, to be launched into the Manukau 
Harbour before sailing along the west coast to its final landing place at Kawhia. 

The traditions of many other ancestral arrival waka also pass through Tämaki River, including 
Matahorua, Aotea, Mataatua, Te Arawa, Takitimu and Tokomaru. The overland crossing provided 
access to west coast destinations such as Kawhia, Raglan or Taranaki, without the arduous journey 
around the North Cape. It was of immense strategic importance to Mäori, as well as later European 
travellers. The Tämaki River marked the boundary between tribal lands, and several notable pä were 
built along it. Fierce battles for supremacy, of legendary proportions, were fought on and along the 
river. Many warriors were captured, slain or drowned in the river during the fighting. 

In more peaceful times, the river served as a major thoroughfare for travel by waka. It was an 
abundant source of seafood, including fish, cockles, pipi, oysters, scallops and mussels. The surround-
ing land was filled with kainga (villages) and gardens.

The river itself is actually an estuary, with bright-green seagrass meadows, large exposed sand-
flats and sandstone reef, mudflats and rock platforms, and even an exposure of volcanic ash from 
the Taupo volcanic zone. It includes extensive shellfish beds and a long sand-shell spit used by hun-
dreds of native wading birds, some of which are endangered. DOC has designated it as an “Area of 
Significant Conservation Value”.

What will it take to return the Tämaki River to its former glory? Would knowing the history make 
a difference? Would knowing its original state and status help people to see the extent of modern 
abuse and degradation? What will it take to revitalise the once majestic river? 

Fortunately or unfortunately, whichever way you choose to look at it, most of the published 
information available today pertains to the level of pollution, toxins and other contaminants in the 
Tämaki River. 

In January 2007 the ARC released a media statement “Aquatic Life Affected in Tämaki”, noting 
from the 2005 survey that the Tämaki River is amongst the worst in the region, with particularly 
high levels of zinc. Zinc enters the estuary from sources such as galvanised roofing, killing off small 
invertebrates such as cockles. As these creatures are at the bottom of the food chain, they in turn 
affect larger species such as fish and seabirds. 

Formerly common species of shellfish have been poisoned by an anti-fouling paint used on 
marine vessels. The paint has now been banned; nonetheless, its detrimental effects on the eco-
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system continue: many species of shelled molluscs are smaller in both size and number. Exotic spe-
cies introduced by international shipping have caused further problems. The introduced Asian date 
mussel, for example, creates vast carpet-like beds that exacerbate the build-up of mud and siltation.

The area surrounding the estuary has become heavily urbanised: it includes densely populated 
residential areas, motorways, factories and an abattoir. Building developments have caused fresh-
water run-off, silt and sewage overflows to enter the estuary; most of the land in the area discharges 
untreated stormwater into the estuary. Formerly sandy beaches have been buried in mud. Salinity 
levels have dropped, decreasing biodiversity and straining native species that thrive in salty water. 
From the banks of the estuary, the pollution is obvious. There is broken glass, debris, factory rubbish 
and run-off, and household refuse floating in the bad-smelling water (Figure 58). 

Figure 58: Abandoned shopping carts and other refuse accumulating on the shore in the upper parts of Tämaki River.

Nonetheless, people still fish from the banks, and local waka ama teams continue to train here. Pad-
dlers complain of infected wounds after being cut on hidden debris in the murky, silty water. Bouts 
of conjunctivitis are common after being splashed in the eyes. Some paddlers are careful to wash 
exposed skin with clean water and disinfectant immediately after sports training, to minimise the 
health risks caused by contact with the polluted water.

Restoring the Tämaki River will not be easy, and will require deeper understanding and collabora-
tion from all parties. But as the American environmentalist Aldo Leopold said, “We grieve only for 
what we know.” In order to attain support for clean-up efforts, we must strengthen our knowledge 
of the ecological importance and cultural significance of the estuary. A deeper understanding of its 
history, and appreciation for its great potential, will certainly strengthen the urgency to work col-
laboratively to establish rähui and return the river to a clean, thriving state.
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6.9  Case Study 2: Whangamatā (invited contribution 
by Nathan Kennedy, Ngāti Whanaunga)

The Whangamatä catchment holds an ancient continuous Mäori cultural landscape from the har-
bour into the adjacent steep forest valleys. The tribal whakapapa of Whangamatä is long and com-
plex, having been occupied from earliest times. The catchment represents a mosaic of iwi and 
whänau (family) ancestral relationships, from earliest to more recent centuries of occupation and 
use. Regarding archaic sites at Whangamatä, archaeologist Warren Gumbley wrote:

”It is axiomatic among archaeologists in New Zealand that sites including archaeological depos-
its relating to the Archaic Phase of New Zealand Eastern Polynesian Culture are valuable. They relate 
to the earliest period of New Zealand history and can be inferred to have been relatively few in the 
first instance, and to have become less common through natural and human processes over time. 

The archaeological record confirms a long Mäori occupation of Whangamatä but provides only 
a partial view of the cultural landscape. The township conceals some of the earliest human occupa-
tion sites in Aotearoa. Like residential development, forestry and farming in the catchment have 
destroyed numerous ancestral places, leaving no record except the traditions and memories held by 
tängata whenua.”

Under the management of Thames-Coromandel District and Waikato Regional councils, there is 
a range of statutory and non-statutory planning instruments operating at Whangamatä. These 
include:

 – Coromandel Blueprint Project – non-statutory inter-agency long-term planning project; 
positions Whangamatä as one of three growth nodes for the peninsula;

 – Whangamatä Community Plan – Thames-Coromandel District Council; heralded by 
Parliamentary Commissioner for the Environment (PCE) as a model for community planning 
(PCE 2005);

 – District Plan; 
 – Regional plans and policy statement; and
 – DOC’s draft Conservancy Plan and Fisheries plans.

Most, if not all, of these appear to include adequate Mäori-specific provisions, bringing with them an 
expectation that tängata whenua’s values and interests will be provided for and protected in envi-
ronmental planning processes and decisions. However, as has been observed regarding council plan-
ning nationally (Day, Mason et al. 2009), there is a gap between planning provisions and their imple-
mentation at Whangamatä. Despite Mäori planning provisions and protests from tängata whenua, 
wähi tapu (sacred places) and wähi taonga (treasured ancestral places) have been modified and 
destroyed as a result of numerous developments, often as a result of council’s own activities, and 
continue to be destroyed at Whangamatä.

A number of significant developments that have impacted on tängata whenua are considered 
below.

6.9.1 Managing Whangamatā’s cultural landscape

6.9.1.1 Mana Whenua – Mana Moana

The Whangamatä Marina was recently granted consent after legal opposition by tängata whenua 
and the wider community lasting more than 10 years. The resulting marina, and the cultural and 
environmental destruction caused, rank it as one of the most significant place-specific grievances of 
Gulf Mäori of the last decade and it is the subject of an outstanding contemporary Treaty of Wait-
angi claim. 

The marina was finally constructed, bringing the loss of Te Matatuhi – an ancient wetland and 
tribal taonga, the destruction of the traditional home of one of few known mainland populations of 
moko skink, dredging and removal of the tribal rohe (area) of the mata (obsidian, dark glassy volcanic 
rock). The new all-tide channel dissected the harbour’s main pipi and tuangi (cockle) beds, and ongo-
ing dredging prevents recolonisation (Figure 59). 
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Ironically the removed moko have bred with unpredicted success in captivity, and tängata whenua 
and DOC have, several times in the last two years, released populations to selected locations around 
their harbour. Similarly, the access barrier to the kaimoana beds caused by the new channel as well 
as shellfish flesh discoloration during the marina construction and the rähui resulting from algae, 
had the combined effect that recent 2011 surveys of the kaimoana beds found plentiful and mature 
populations of pipi and tuangi. Results of other tests for shellfish quality have not yet been received.

Figure 59: The Marina Society’s plan (red) with the car park overlaying  

Te Matatuhi, the dredged channel bisecting the pipi bed (yellow).

While allowed under RMA processes, the marina was given practical effect when both the local 
council and DOC granted long-term leases of land. On this basis, the now-repealed Foreshore and 
Seabed Act was invoked by counsel for tängata whenua, but dismissed by the Chief Environment 
Court judge as not being a matter before the court. The Minister of Conservation first declined the 
coastal occupation permit applications, largely because of tängata whenua’s concerns, but the deci-
sion was overturned by the High Court, and the then Environment Minister granted them. Despite 
continued opposition from tängata whenua, resulting in a month-long occupation of the land, the 
marina was finally constructed.

6.9.1.2 Mauri, Manawa, Kaimoana

Whangamatä remains an important pätaka kai (food store) of Hauraki iwi but has suffered from 
decades of pollution, including occasionally semi and untreated human waste. One consequence 
of this is a proliferation of manawa (mangroves). Manawa are significant to Whangamatä täng-
ata whenua, as a köhanga – a haven for juvenile kaimoana, and for their role as a buffer and fil-
ter of run-off from adjacent land. Illegal removal of several hectares of mangroves has taken place 
in recent years, but despite long-standing opposition by tängata whenua, the regional council has 
lodged applications for consent to remove large areas of Whangamatä mangroves. The current draft 
Whangamatä Harbour Management plan is largely concerned with mangroves, and anticipates their 
large-scale removal (Waikato Regional Council 2007a). Waikato Regional Council is currently prepar-
ing consent applications for large-scale removal. 

A stretch of coastline north and south of Whangamatä has been closed for kaimoana gathering 
for 15 months due to toxic algae. Otawhiwhi pipi beds to the south were previously closed by the Min-
istry of Health because of the presence of effluent-related bacteria and other nutrients. This closure 
increased pressure on Whangamatä kaimoana, but this was relieved by the wider area algal closure. 
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During recent decades the regional council reported pollutants in the harbour (Vant 2001), iden-
tifying potential health issues arising from this pollution (Vant 2000). Monitoring observations have 
included periphyton growth downstream of irrigation areas, and the absence of taonga fish species 
(Kessels 2005), and excessive levels of various pollutants within the harbour.

Environmental balance and its achievement are matters of utu (concerning the maintenance of 
balance). The extent to which people can extract resources and other benefits from an environment 
needs to be tempered by the ability of that place to absorb the effects of activities without signifi-
cant detriment. In various tribal tikanga (custom), long-term local environmental balance must be 
maintained or environmental consequences will ensue. Central to such tikanga is the position that 
man-made effects of activities such as residential subdivision and commercial forestry are yielding 
significant environmental effects and that mitigation measures imposed are providing little relief.

The mauri of Whangamatä has been repeatedly impacted by human activity. Shadow areas cre-
ated by two causeways, constructed despite engineering advice to the contrary, have created sedi-
ment sinks which have been colonised by manawa. Material removed for regional council stream 
maintenance has been left piled within the harbour, despite tängata whenua identifying inadequate 
energy for dispersal.

On the positive side, management agencies have provided for tängata whenua (and wider com-
munity) input to consent and other planning processes, and some public/iwi concessions have been 
granted, but largely only after legal action; few have been offered as part of initial applications 
lodged and heard by local and regional councils. Furthermore, over 90% of consent applications have 
been granted on a non-notified basis (Ministry for the Environment 2009); tängata whenua have 
little faith therefore that Mäori values are being properly considered.

Thames-Coromandel District Council supported and applied for wastewater plant and disposal 
consents including irrigation to land, largely in recognition of the offensiveness to tängata whenua 
of disposal directly to water. Council has commissioned Mäori values assessments for recent signifi-
cant projects, Waikato Regional Council staff have endeavoured to rationalise and reduce the area of 
mangrove removal sought by vocal Whangamatä community removal advocates, and forestry oper-
ators of Crown licences now (sometimes) take measures to identify and protect Mäori historic sites.

However, there are currently few or no iwi-agency formalised relationships at Whangamatä, and 
interaction that does occur does so when it suits the agencies. As elsewhere in the country, there is 
little or no participation in reserves land management or that of other significant Mäori resources. 
Furthermore, participation in planning processes costs iwi dearly, both financially and as a drain 
on human resources. Despite plan provisions for resourcing iwi participation (Thames-Coromandel  
District Council 1999; Waikato Regional Council 2000; Waikato Regional Council 2007b), this  
seldom occurs. 

6.9.2 Māori environmental evaluation 

There has been some evaluation of environmental results at Whangamatä, mainly resulting from 
monitoring requirements in consent conditions. As a result, evaluation has been undertaken sporad-
ically, and results cannot be easily compared over time. Accordingly, how do agencies substantiate 
any claims to environmental success, from either a Mäori or wider-community perspective? 

The Hauraki Gulf Forum has previously recognised a need for the development or recognition 
and formalisation of tängata whenua’s environmental indicators for Tïkapa Moana, and its mem-
bers have made limited efforts toward exploring these (Kennedy and Jefferies 2008; Hauraki Gulf 
Forum 2009). 

To date, few environmental evaluation frameworks based on Mäori perspectives and knowledge 
have been applied to the management and evaluation of Tïkapa Moana. But these do exist and 
are being used and adapted within Tïkapa and elsewhere by tängata whenua and other agencies 
(Aranovus Research 2007; King, Goff et al. 2007). 



State of the Environment Report 2011 133

6.9.2.1 The PUCM Māori Outcome Evaluation (MOE) Methodology

One Mäori-focused evaluative framework is that developed within the Foundation for Research, Sci-
ence and Technology – funded Planning Under Co-operative Mandates (PUCM) programme (Bachurst, 
Day et al. 2002)22. The PUCM MOE incorporates physical environmental indicators work such as that 
of Gail Tipa and associates with Ngäi Tahu (Tipa and Teirney 2006), and Garth Harmsworth with 
Ngäti Porou (Harmsworth 2004). The research considered the significant but short-lived Mäori input 
into the national indicators development programme run by the Ministry for the Environment in the 
late 1990s, and similar work since. 

From these sources and widespread input by Mäori practitioners and experts, environmental 
objectives and outcomes are assessed in terms of relevant tikanga. It includes indicators aimed at 
evaluating performance against Mäori provisions in legislation. The PUCM MOE was trialled by iwi 
and councils, including the Gulf Forum’s Ngäti Maru Runanga and Matamata-Piako District Council, 
receiving favourable feedback. 

PUCM‘s Mäori Outcome Evaluation Methodology helps to fill a void in outcomes and indicators 
reporting, by linking kaupapa (foundation principles), associated environmentally important tikanga 
(fundamental rules governing Mäori relationships) with the natural environment, and Mäori aspira-
tions (in the form of outcomes), to environmental indicators. 

It thereby provides a means by which councils can interpret the effectiveness of statutory plans 
and their implementation using Mäori values as a foundation.

22 www.waikato.ac.nz/igci/pucm/Publications-Phase3.htm
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The previous chapters have described a range of environmental indicators and have identified a 
number of strategic considerations in relation to each. The information presented demonstrates 
that historical and ongoing activities have had a major impact on the Gulf, and that most indicators 
are continuing to show negative trends or have stabilised at environmentally low levels. 

This chapter considers how local, regional and central government organisations have responded 
to the strategic environmental issues identified in this report, and presents an alternative trajectory 
which will require a significant shift from business as usual. Management responses to strategic 
issues are discussed below and summarised in Table 11.

7.1 Human impacts on the Gulf

Chapter 3 gave an overview of human impacts on the Gulf and concluded that key components of 
the natural ecosystem, such as benthic habitats and fish populations, have been lost or significantly 
reduced. This means that the life-supporting capacity of the Gulf has been diminished. It also means 
that resilience, which is the ability of natural systems on the Gulf to withstand and recover from dis-
turbances, has also been compromised.

The Hauraki Gulf Marine Park Act emphasises the need to protect and, where appropriate, 
enhance the resources of the Gulf. Where those resources are significantly degraded, management 
approaches could be expected to focus on restoration, rather than on slowing deterioration or main-
taining the status quo. 

Many marine ecosystems retain the ability to restore themselves if the pressure of human activi-
ties is significantly reduced. This is demonstrated by the marked rebounding of snapper and crayfish 
populations, and reduction in sea urchin barrens, in marine reserves within the Gulf after fishing 
pressure was removed.

There are currently five marine reserves within the Hauraki Gulf, covering a total of 3,538 ha. A 
further marine reserve of 400 ha in the location of the Tawharanui Marine Park has been approved 
but has yet to be gazetted. These cover only a very small proportion of the Gulf’s marine area (0.3%) 
and are collectively not large enough to make a significant contribution to the ecological health and 
productivity of the Gulf as a whole.

In 2006, the Government released the Marine protected areas policy statement and implementa-
tion plan. The purpose of the policy is to “protect marine biodiversity by establishing a network of 
MPAs [marine protected areas] that is comprehensive and representative of New Zealand’s marine 
habitats and ecosystems”. MFish and DOC are jointly responsible for implementing the policy.

The implementation plan identifies 14 biogeographic regions which collectively cover the entire 
New Zealand marine area out to the 200 m depth contour. Under the plan, each of these regions is 
to be the focus of a planning process undertaken by community-based marine protection planning 
fora consisting of stakeholders and supported by staff from MFish and DOC. 

The Hauraki Gulf falls within the north-east biogeographic region which extends from Ahipara 
on the north-west coast, around North Cape, and down the east coast as far as East Cape. No forum 
has yet been established to progress the identification of MPAs in this region. The further implemen-
tation of the MPA policy statement is currently on hold, pending the results of an internal review.

Achieving restoration on land usually requires active weed and pest control and the replanting 
of indigenous species. Despite this, restoration approaches have been applied very successfully to 
many of the Gulf’s islands, with these now providing important refuges for threatened species. Intro-
duced mammalian predators and herbivores have been eradicated from eight islands in the Gulf, and 
another 20 islands have been kept free of these pests. A variety of threatened birds and reptiles has 
also been reintroduced to pest-free islands of the Gulf, where populations are now increasing.

Tiritiri Matangi has been replanted with native trees, and similar restoration is now occurring 
on Motuihe, Motutapu and Moturoa islands. DOC has embarked on an ambitious project to make 
Rangitoto and Motutapu islands (which total 3,800 ha) pest free, and when this is achieved it will 
comprise the largest animal pest-free habitat in the Gulf. 
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7.2 Fishing impacts 

The fisheries environmental indicators highlighted the large influence which fishing activity has had 
on the Gulf’s natural systems. Fisheries ecosystem indicators show declines in the Firth of Thames 
and central Gulf. Impacts of trawling and dredging on the seabed are occurring in the outer Gulf and 
are likely to be significant.

A variety of sustainability decisions made by MFish, under the Fisheries Act 1996, has a significant 
impact on the health and productivity of the Gulf’s marine environment. A key decision is setting the 
total allowable catch (TAC) for each stock. The TAC affects the size of targeted fish stocks, and this 
in turn can have an impact on the stock’s productivity, size, age structure and genetic diversity. The 
TAC can also impact on the broader marine ecosystem through inter-linkages and trophic cascades 
flowing through food webs. 

Under the Fisheries Act, the Minister is required to set a TAC for each fish stock that maintains its 
biomass “at or above” a level that can produce the maximum sustainable yield” (MSY). The biomass 
that will produce the MSY is typically between 20 and 30% of the virgin (unfished) stock size. Snapper 
and kahawai stocks in the Gulf are thought to be at or above this level. 

The setting of TACs to achieve the maximum sustainable yield is aimed at extracting the maxi-
mum biomass of fish over time while maintaining the stock’s productive capacity. It is designed to 
ensure that an individual stock is fished “sustainably” but does not generally consider the environ-
mental consequences of extracting the fish. 

Current fisheries management is thought to be resulting in a slow rebuild of the snapper stock 
and stable cockle populations (although with declines in some areas). Lobster stocks are being main-
tained at around 20% of 1945 levels, and tarakihi and trevally stocks are as likely as not being fished 
at levels which will cause them to either fall below, or remain below, the biomass required to pro-
duce the MSY. MFish has not obtained sufficient information to ascertain the status of other stocks. 
Permanent bans have been placed on cockle harvesting at Eastern Beach and Cheltenham Beach, 
temporary bans have been imposed at Umupuia and Whangateau Harbour and there is a seasonal 
ban at Cockle Bay. There are no other current management responses to these issues.

Fisheries management decision-making affecting the Gulf is largely single stock-focused and 
does not generally consider the wider impacts of fishing on the Gulf’s marine ecosystems. Address-
ing these wider effects may require management decisions which allow stocks to rebuild to levels 
higher than MSY. 

A large amount of the commercial catch taken within the Gulf is being harvested by bottom 
trawling in the outer Gulf, the environmental impacts of which are unknown but potentially sig-
nificant. Although bottom trawling is currently excluded from the inner Gulf, there is currently no 
management response to the potential impacts of this activity in the outer Gulf.

The Fisheries Act provides for the Minister to approve fisheries plans which can relate to fish 
stocks, fishing years or areas such as the Hauraki Gulf. The plans are intended to enable a more 
strategic and objectives-based approach to be applied to fisheries management. The plans must be 
taken into account when the Minister applies fisheries sustainability measures and councils must 
have regard to them when preparing RMA policies and plans. These have been identified as a prior-
ity since at least 1999. Draft national plans for inshore finfish, shellfish and freshwater stocks have 
been operational from 1 July 2011.
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7.3 Sediment contamination

 
Sediment contamination affects relatively localised areas, but in the areas where it is occurring, the 
ecological health of the seabed communities is significantly affected.

Considerable effort is being directed at addressing sediment contamination, including:
 – containing the spread of activities that generate contaminants by setting spatial limits on 

urban development;
 – requiring stormwater treatment for high-risk industrial sites and new urban developments;
 – developing and implementing integrated catchment management plans, which identify options 

for stormwater management;
 – where appropriate and practicable, retrofitting stormwater treatment in developed urban 

areas;
 – implementing community education on stormwater issues; and
 – ensuring case-by-case management of legacy contaminant issues.

The above responses are not expected to remediate areas affected by urban and legacy contamina-
tion but may slow accumulation and prevent the degradation of areas with clean sediments.

7.4 Nutrients

 
The nutrient environmental indicators have identified the Firth of Thames as being enriched with 
nitrogen. High levels of nitrogen can result in blooms of phytoplankton and seaweed, reduced water 
quality and can have toxic effects on marine life. The major source of the nutrients is thought to be 
from the Waihou and Piako rivers, likely resultant from an increase in dairy cows within the catch-
ment. Nitrogen can enter waterways as a result of the application of nitrogen-based fertiliser on 
pasture and discharge of effluent from grazing stock. 

The management response to this issue so far has been weak. Under the Waikato Regional Plan, 
stock are now excluded from “priority 1” waterways which include the stretch of the Waihou River 
two kilometres upstream of saltwater intrusion. This is intended to address stream-bed erosion and 
water quality issues arising from stock urinating or defecating in waterways.

However, the grazing of dairy cows is a permitted activity within the catchments of the Waihou 
and Piako rivers under the Waikato Regional Plan. The application of fertiliser is also a permitted 
activity so long as it complies with a series of standards including the development of a nutrient 
management plan. No maximum application rate is prescribed in the plan.

In the proposed Hauraki District Plan (notified 24 August 2010) farming is a permitted activity 
within the rural zone of the Hauraki District with no performance standards applied to address non-
point discharges. Farming is similarly a permitted activity in rural areas of the Matamata-Piako District.

7.5 Bathing beach quality

 
There are frequent exceedances of guidelines for contact recreation on urban Auckland and Coro-
mandel Peninsula beaches. These are a result of overflows from wastewater infrastructure and 
poorly-performing septic tanks.

The contamination poses a risk to human health but is not a significant ecological issue. Addressing 
it requires investment in upgrading wastewater infrastructure. This is gradually occurring through:

 – the adoption of a catchment management approach under the Auckland Regional Plan: Air, 
Land and Water and requirement that operators of waste and stormwater networks apply for 
consent; 

 – separation of combined wastewater and stormwater networks within the Auckland isthmus;
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 – long-term investment in increasing the capacity of the wastewater network and reducing 
overflows throughout the Auckland region; 

 – construction of a new wastewater treatment plant to service Kawakawa Bay and replace 
polluting septic tanks; and

 – investment in the upgrading of wastewater plants on Coromandel Peninsula.

7.6 Sediment

Accelerated sediment release from land is having large-scale impacts on the coastal margins, espe-
cially in estuaries. Sources of sediment include earthworks as well as grazed pasture and forestry 
operations.

In the Auckland region, there has been a continuing and progressive effort to control sediment 
release through regional and local planning processes, consenting, education, and proactive inter-
vention. Suspended sediment concentrations appear to be declining in Auckland’s coastal water 
suggesting that this effort is leading to improved environmental outcomes. The Auckland Regional 
Plan: Sediment Control is currently under review and it is anticipated that further improvements will  
be made.

Greatest improvements have been made in controlling sediment discharges from large earth-
works through provisions in the Auckland Regional Plan: Sediment Control. However, monitoring in 
the Mahurangi Harbour and other estuaries, which have largely rural catchments, has shown sig-
nificant negative impacts on benthic communities as a result of sedimentation. There are currently 
much weaker regulatory controls within the Auckland Region over the generation of sediment from 
rural activities. Forestry harvesting is a permitted activity so long as it complies with the standards 
in the plan. There are no controls on sediment produced from grazing activities.

Auckland Council is using non-regulatory approaches to address this problem in a number of 
catchments, based on the model developed from the Mahurangi Action Plan. The first phase of the 
Mahurangi Action Plan ran from 2004 to 2009 and focused on support for riparian fencing and plant-
ing. The second phase is focusing on the development of a Mahurangi Strategic Catchment Plan 
which will determine priority actions going forward. This plan is still under development. A similar 
action plan has been under development for the Whangateau Harbour under the council’s Sustain-
able Catchments Programme.

Within the Waikato Region there are stronger regulatory controls on vegetation clearance associ-
ated with forestry and these are designed to protect riparian areas and control harvesting on steep 
slopes including those draining into estuaries on Coromandel Peninsula. However, there are much 
weaker controls on sediment generated by grazing activities in the Waikato Region. Farming is a 
permitted activity outside stock-exclusion water bodies provided environmental standards are met.

Sedimentation issues are also being addressed by the Peninsula Project, which is a collaborative 
initiative between Waikato Regional Council, the Thames-Coromandel District Council, DOC and the 
Hauraki Mäori Trust Board. The project is focused on flood protection, river and catchment manage-
ment and animal pest control. It consists of a range of individual projects such as river bank stabi-
lisation, tree planting and possum control undertaken by relevant agencies and landowners with 
financial assistance. It has also included the development of a management plan for the Wharekawa 
River catchment and a draft plan for the Whangamatä Harbour catchment.

The New Zealand Coastal Policy Statement 2010 includes new national policy on sediment manage-
ment in the coastal environment. Under Policy 22, councils now must:
1. Assess and monitor sedimentation levels and impacts on the coastal environment;
2. Require that subdivision, use, or development will not result in a significant increase in 

sedimentation in the coastal marine area, or other coastal water;
3. Control the impacts of vegetation removal on sedimentation including the impacts of 

harvesting plantation forestry; and
4. Reduce sediment loadings in run-off and in stormwater systems through controls on  

land-use activities.
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7.7 Introduced marine species

The Port of Auckland is a high-risk area for the introduction of invasive species given the large num-
ber of overseas vessels which visit. In addition, the large boating community in the Gulf can rapidly 
spread problem species. Maintaining a healthy marine environment which is resilient to biological 
invasions is very important, as is prevention and early detection, as once a species is established it is 
very difficult to eradicate it. 

Biosecurity NZ currently controls the discharge of ballast waters on international vessels through 
an Import Health Standard and this requires ballast water to be exchanged at sea (200 nautical miles 
from land) before it can be discharged in New Zealand waters. 

The other main vector for new organisms to be brought into the area is through attachment 
to the hull of vessels and underwater structures. There are currently no rules addressing this issue 
but Biosecurity New Zealand is in the process of developing an Import Health Standard on vessel 
biofouling. 

In early 2008 Biosecurity NZ initiated a programme of targeted marine pest surveillance which 
looks out for six specific unwanted marine pests. Surveillance is being undertaken twice yearly in 
winter and summer at several locations within the Gulf.

7.8 Harmful algae, pathogens and mass mortalities

The role of human activities in the occurrence of these incidents is unknown, but the effects could 
potentially worsen if other activities serve to further reduce the resilience of the Gulf’s marine eco-
systems. There has been no direct response to this issue other than investigations to determine the 
direct cause of individual incidents. There have also been no management responses aimed directly 
at resilience issues.

7.9 Maintenance and recovery of biodiversity 

The islands of the Gulf have a critical role to play in preventing the extinction of native fauna and 
require continual vigilance to ensure that invasions of weeds and pests do not occur. The restoration 
and ongoing maintenance of the islands is achieved through a partnership between DOC, Auckland 
Council, Waikato Regional Council and community groups, including:

 – the implementation of the regional pest management strategies which control the movement 
of listed species into or between islands;

 – Auckland Council pest eradication and control programmes on Rakino and the Noises islands 
and on key mainland sites;

 – Department of Conservation weed control work on Hauturu (Little Barrier Island) and pest 
control work on Rangitoto and Motutapu islands;

 – joint Auckland Council and DOC programme on Aotea (Great Barrier Island); and
 – partnerships between DOC and community-led trusts to protect and restore Hauturu (Little 

Barrier), Motuihe, Motukaikoura, Motuora, Motutapu and Tiritiri Matangi islands.

Nearly half of the 15 most common wader species in the Firth of Thames have displayed declin-
ing trends in their numbers since 1960. “Muddy Feet”, a collaborative project between Waikato 
Regional Council, Auckland Council, Thames-Coromandel District Council, Hauraki District Council, 
DOC, MFish, local iwi and the Miranda Naturalists’ Trust, has focused on identifying and addressing 
threats to wading birds in the Firth of Thames. 

Phase III of the project involves the implementation of a restoration action plan and the promo-
tion of an ecotourism development vision. Actions are currently focused on undertaking baseline 
surveys, control programmes for weeds, predators and mangroves, community education and res-
toration of swamp habitats. 
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Bryde’s whales are highly threatened and a significant number have been killed by vessel strike 
with others killed by mussel line entanglement. The habitat of the Bryde’s whales coincides with the 
major shipping channel entering the Port of Auckland. These threats could be reduced significantly 
if the speed of large vessels entering the harbour were reduced. Commercial fishing of the relatively 
narrow range of species that Bryde’s whales consume could also have a serious impact on the whale 
population. No action is currently being taken to address these issues.

7.10 Coastal development  

Coastal development is having significant cumulative impacts on the ecology and landscapes of the 
Gulf’s coastal environment. There are few mainland bays and beaches in the Auckland Region with-
out building development on the surrounding land. Around a third of bays within the Waikato Region 
are undeveloped. The pressure to upgrade these undeveloped areas is likely to increase in the future.

Within the Auckland Region, urban development has been governed by the Auckland Regional 
Growth Strategy, which is given effect through the regional policy statement and district plans. This 
implements a policy of containment and intensification of development within nodes and corridors 
among established urban areas with limited provision for greenfield development. It includes the 
demarcation of a metropolitan urban limit which is designed to contain rural and coastal sprawl.

Auckland Council is in the process of developing a new Auckland spatial plan. The purpose of the 
spatial plan is to set a strategic direction for Auckland’s growth and development over a 20 to 30-year 
timeframe which integrates social, economic, environmental and cultural objectives. The direction 
given by this plan is likely to have a significant impact on the location of coastal development.

In the Waikato Region, a collaborative project between Thames-Coromandel District Council, 
Waikato Regional Council, Hauraki Whanui and DOC, the Coromandel Peninsula Blueprint Project, 
commenced in 2006 and has resulted in an agreed strategic direction for future growth and devel-
opment of Coromandel Peninsula over the next 50 years. The next stage of the project involves the 
development of seven Local Area Blueprints. The Thames-Coromandel District Council is embark-
ing on a process to review its district plan and to incorporate the direction set out in the Blueprint 
document. 

Auckland Council has had an active programme of purchasing coastal regional parks to protect 
sensitive areas of the coast from development and to make them available for public use and enjoy-
ment. Sixteen regional parks are located within the coastal environment of the Hauraki Gulf. Recent 
activity includes purchases in 2005 of the 178 ha Pakiri Regional Park, in 2008 of the 50 ha Te Arai 
Regional Park, and in 2010 of a 13.7 ha addition to the Duder Regional Park. 

There is no similar regional park programme within the Waikato Region and consequently there 
are no regional parks within this portion of the Gulf. 

Thanks to the generosity of philanthropists Neal and Annette Plowman, a 100-year lease has 
been granted over Rotoroa Island to the Rotoroa Island Trust. The Trust is in the process of restoring 
the island and it is now publicly accessible. 
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Table 11: Summary of strategic issues for the Hauraki Gulf and current management responses.

Issue Strategic considerations Response

Human impacts –  Key components of natural ecosystem 
lost or significantly reduced.

–  Weed and pest control and/or 
restoration on 28 Gulf islands.

–  5 marine reserves (but covering 
only 0.3% of the Gulf).

–  Approval of new marine 
reserve at Tawharanui.

–  No progress on identifying 
representative network of MPAs.

Fishing –  Fishing impacts affect most of the 
Gulf’s marine ecosystems.

–  The status of the majority of 
commercial fish stocks is unknown.

–  Snapper stock is reduced but rebuilding.
–  Lobster stock is reduced and being 

maintained at about 20% of 1945 levels 
with current the statutory target. Model 
projections of stock biomass contain a 
considerable amount of uncertainty.

–  Cockle abundance is relatively stable 
with large declines in some areas.

–  Negative trends in abundance of 
rare and threatened fish and fish 
diversity in the Firth of Thames.

–  Negative trends in fish size and 
productivity in Firth of Thames, 
central Gulf and inshore between 
Kawau and Waiheke islands.

–  Large areas of Gulf subject to trawler and 
scallop dredge disturbance with impacts 
unknown but likely to be significant.

–  Setting of TAC resulting in slow rebuild 
of snapper stock and maintenance 
of kahawai above the MSY.

–  Lobster CRA2 fishery is still above 
the statutory target level, and 
therefore; the total allowable catch 
has not been altered since 1997.

–  Insufficient information obtained to fully 
ascertain the status of other fish stocks.

–  Fisheries decision-making single-
stock focused and does not address 
wider ecosystem impacts.

–  No action to address potential 
environmental impacts of 
trawling in the outer Gulf.

Sediment contamination –  Affects a relatively small area of 
the Gulf but locally important.

–  In some areas contaminant 
levels moderately elevated with 
measurable impact on ecological 
health of seabed communities.

–  Concerted management efforts to 
address issue through combination 
of control at source and treatment of 
wastewater discharges but not sufficient 
to prevent further contamination.

Nutrients –  Firth of Thames enriched with 
nitrogen with 90% originating from 
the Waihou and Piako rivers and 
consistent with increase in dairy cows.

–  Nutrient levels in coastal waters of 
Auckland region stable or declining.

–  Trends in coastal nutrient levels not 
available for the Waikato Region.

–  Stock excluded from lower 
reaches of Waihou River

–  Little additional management 
response with grazing and fertiliser 
application-permitted activities in 
relevant regional and district plans.

Bathing beach quality –  Exceedances of the “action”-level 
guideline for contact recreation frequently 
occur in the Gulf, mainly on urban 
Auckland and Coromandel beaches.

–  Ongoing investment in upgrade of 
wastewater treatment infrastructure.

Sediment –  Land-sourced sediment resulting from 
ongoing and historical land-use and 
land-disturbance activities responsible 
for relatively large-scale impacts on 
the coastal margin including infilling, 
mangrove expansion and changes in the 
composition of benthic communities.

–  Suspended sediment concentrations 
declining in coastal water in 
the Auckland Region.

–  Strong controls on large earthworks 
in Auckland region.

–  Few controls on forestry harvesting 
in the Auckland region.

–  Stronger controls on forestry harvesting 
on Coromandel Peninsula.

–  No controls on grazing activities.
–  Ongoing catchment-based 

collaborative projects.
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Issue Strategic considerations Response

Introduced marine species –  Port of Auckland a high-risk area 
for introduction, establishment and 
spread of introduced species.

–  Large amount of boating and other 
marine-based activities in Gulf 
increase risk of their spread.

–  Once established, eradication 
extremely difficult.

–  Import health standard for 
discharge of ballast water.

–  No current controls on hull fouling but 
import health standard under development.

–  Ongoing marine surveillance programme.
–  No action focused on increasing 

resilience of the marine environment.

Harmful algae, pathogens 
and mass mortalities

–  Impacts typically occur very rapidly, 
cover large areas and have severe 
consequences for humans, affected 
species and associated industries.

–  Information difficult to access. 

–  No management response other than to 
ascertain cause of individual incidents.

Maintenance and 
recovery of biodiversity

–  Islands of the Gulf have a highly critical 
role in preventing extinction of native 
fauna and must be continually guarded to 
prevent invasions of exotic flora and fauna.

–  Nearly half of the 15 most common 
wader species in the Firth of Thames 
have displayed declining trends 
in their numbers since 1960.

–  Bryde’s whales are highly threatened and 
11 have been killed by vessel strike and 
two by mussel line entanglement in the 
Hauraki Gulf between 1989 and 2008.

–  Collaborative initiatives to protect 
and restore Gulf islands.

–  Collaborative initiative to protect 
wading birds in Firth of Thames.

–  No direct action to reduce threats 
to the Bryde’s whale 

Coastal development –  Coastal development causes significant 
and cumulative impacts on the ecology 
and landscapes of the coastal environment.

–  There are few mainland bays and beaches 
in the Auckland region without building 
development on the surrounding land 
whereas around a third of Waikato 
bays and beaches are undeveloped.

–  Pressure to develop coastal 
areas likely to increase.

–  Auckland regional growth strategy.
–  Auckland spatial plan.
–  Coromandel Peninsula Blueprint.
–  Auckland regional park acquisition.
–  No coastal reserve acquisition 

programme in the Waikato Region.

Tāngata whenua values –  Programmes and approaches 
based on appropriate tikanga 
and kawa poorly developed.

–  Limited organisational capacity to 
respond to tängata whenua and adopt 
kaitiakitanga-based methodologies.

–  Development of response 
indicators required.

–  Settlement and negotiation 
of Treaty settlements

–  Some new iwi management plans
–  Emergence of collaborative 

governance models.
–  Limited application of kaitiakitanga 

and matauranga.
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7.11 Integrated management

A key purpose of the Hauraki Gulf Marine Park Act is to “integrate the management of the natural, 
historical and physical resources of the Hauraki Gulf, its islands, and its catchments” (Section 3(a)). 
The State of the Environment Report for the Hauraki Gulf is required to include information on pro-
gress towards integrated management (Section 17(1)(g)). 

Integrated management includes integration across biophysical boundaries such as the land and 
the sea, between different management agencies such as DOC, MFish and the various councils, and 
between government and community efforts. Integrated management is designed to enable the 
cumulative impacts of activities on the Gulf to be addressed.

The above description of management responses to strategic considerations has identified a num-
ber of areas where integrated management approaches are being applied. These include:

 – restoration of the Gulf islands (with the involvement of DOC, councils and community trusts);
 – management of coastal development (Auckland regional growth strategy, Auckland spatial 

plan, and Coromandel Peninsula Blueprint);
 – protection of wading birds in the Firth of Thames (Muddy Feet project);
 – restoration of the Mahurangi Harbour (Mahurangi Action Plan);
 – catchment management on Coromandel Peninsula to achieve multiple objectives  

(Peninsula Project); and
 – catchment management approaches to reducing wastewater discharges  

(Auckland Regional Plan: Air, Land and Water).

However, despite these initiatives, the environmental indicators show that management initiatives 
have collectively failed to halt or reverse the decline in the Gulf’s natural resources. There appear  
to be a number of reasons for this: 

 – Intervention is not of sufficient scale or intensity: Many of the initiatives are not of a sufficient 
scale or intensity to successfully address the targeted environmental issues and/or to make  
a measurable difference to the environmental quality of the Gulf as a whole. 

 – Lack of clear environmental goals: Many of the initiatives lack clear goals in terms of measurable 
improvement in the environmental quality of the Gulf’s marine area. A focus on mitigation of 
the effects of individual activities has in many cases failed to effectively address cumulative 
effects. This is particularly the case with the management of sediment and nutrient discharges.

 – Key gaps in management response: In some key areas there has been a lack of management 
response including non-point discharges from many rural activities and the broader 
environmental impacts of fishing activity.

 – Implementation gaps: There are often difficulties in translating policy or the outcome of 
strategic planning exercises into actions which affect activities on the ground, such as through 
the introduction of stronger rules into regional and district plans.

 – Fragmentation: In some key areas management is fragmented between different management 
agencies. For example, there is currently particularly poor integration between fisheries 
management and management under the RMA. There is also fragmentation between planning 
and management efforts in the Auckland and Waikato regions. 

 – Roadblocks: In many cases technical, political, social or economic roadblocks prevent the 
implementation of solutions. 
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Tāngata whenua relationships are acknowledged and reflected in resource management practice: There is 
growing appreciation of the Mäori world view of connectedness between humans and the natural world, 
strengthened roles for tängata whenua in decision-making backed by settlements of historical Treaty 
claims, and traditional knowledge and tikanga find application in the way resources are managed, with 
resulting protection and enhancement of culturally important environmental resources and values.

A flourishing “green-blue network”: The Gulf has a 
network of restored island sanctuaries and protected, 
regenerating areas within the marine area. The network 
will provide places where biodiversity thrives, where 
the ecological health and productivity of the marine 
area is enhanced and where the resilience of these 
natural systems is strengthened. The network will be 
the focus of community engagement in caring for the 
Gulf and will support diverse recreational opportunities 
and thriving low-impact business opportunities.

Sediment and contaminants kept on the land: Effective 
catchment management will ensure that the input of 
sediment, nutrients and other contaminants to the 
Gulf is minimised, and levels do not exceed ecological 
limits. The Gulf’s harbours and estuaries will be healthy 
and teeming with life. They will support thriving 
shellfish beds and a rich fauna of bird life. They will 
also provide safe nursery areas for juvenile fish thereby 
contributing to fisheries productivity. Mangroves will 
no longer be expanding into new intertidal areas.

Enhancement of fisheries: Fishing activity is carefully 
managed to ensure that important marine species, 
habitats and ecological processes are not damaged. 
Alternatives to the maximum sustainable yield are more 
widely implemented to improve ecosystem outcomes, 
while also providing thriving fish stocks that support a 
prosperous local fishing industry, and generously provide 
for cultural, subsistence and recreational harvests.

Knowledge generation occurs within an ecosystem-
based management framework: Only intact, healthy 
ecosystems can provide the complete range of benefits 
that humans want and need over a long period of time. 
Research therefore focuses on ways of preventing the 
environmental costs of current activities being passed 
to future generations. Economic opportunities are 
identified, which provide for sustainable growth while 
halting the serial depletion of natural resources. Ways 
for protecting and restoring marine ecosystems, and the 
services they provide, are developed and implemented.

7.11.1 A new management response? 

The vision for Tïkapa Moana Hauraki Gulf established by the Hauraki Gulf Forum refers to a place 
which is “celebrated and treasured”, which is “thriving with fish and shellfish, kaimoana”, which has 
a “rich diversity of life” and which supports a “sense of place, connection and identity” and a “vibrant 
economy”. So what might a management response look like if the Forum’s vision is to be achieved? 

It is likely to include at least the following five elements:
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The Hauraki Gulf Forum has set an aspirational vision (see Section 2.2), which seeks to protect 
and care for the Gulf. The vision aims for a future where environmental quality is maintained, and 
the Gulf is rich in diversity, with thriving fish and shellfish (kaimoana). It also seeks to ensure that 
resources are used wisely to grow a vibrant economy, and that our cultural heritage is protected. 
This report measures progress toward achieving that vision, and also considers whether the life-
supporting capacity and resources of the Gulf are being protected or, where necessary, enhanced, in 
accordance with the management objectives of the Hauraki Gulf Marine Park Act (2000).

Note that this is a State of the Environment Report. Its focus is therefore clearly on the environ-
ment, rather than on the state of fisheries, or any other exploited resources. Fisheries assessments 
seek to maximise the yield, while maintaining the stock's productive capacity. This is achieved by 
deliberately fishing down stocks to levels where productivity is maximised. Models indicate that this 
usually occurs somewhere between 30 and 60% of unexploited levels (Mace 2001), but it can be 
lower. For instance, the maximum sustainable yield (MSY) for snapper in the Hauraki Gulf and Bay 
of Plenty substock is theoretically achieved when the stock is fished down to 23% of the unexploited 
biomass. As a result, fishing is a major environmental stressor that affects the whole of the Gulf. In 
this report fisheries data is therefore interpreted from an environmental management perspective, 
rather than from a fisheries’ sustainability or productivity one.

In order to assess progress toward achieving the vision and achievement of management objec-
tives, it is necessary to put contemporary information into a context. Humans have lived in New Zea-
land for only a relatively short time, but their impacts on the natural system have been profound. The 
past 150 years (i.e. two human lifespans) have seen the extinction of a number of native terrestrial 
species, native forests and vast wetlands being replaced by pastoral land use, rapid sedimentation 
of the coastal zone, the destruction of ecologically important marine habitats (e.g. mussel beds), 
large reductions in the populations of fished species, and continuing growth in urbanisation lead-
ing to the loss, modification and contamination of the coast (Section 3.2). The natural resources of 
the Hauraki Gulf and its catchments have therefore had a relatively short but unenviable history of 
unsustainable utilisation. 

Concern about environmental issues has led to ground-breaking changes in New Zealand’s envi-
ronmental regulations over the past 20 to 30 years, including the introduction of the quota man-
agement system for fisheries, and the creation of the RMA. It is reasonable to expect these regula-
tions should have reduced environmental degradation and habitat loss in the Gulf, and allowed the 
recovery of depleted species and communities. There are encouraging signs for some indicators. For 
instance, the former ARC spent considerable effort in reducing sediment run-off through regulatory 
and non-regulatory initiatives. It is therefore pleasing that 18 of the council’s 20 coastal water-quality 
monitoring sites displayed improving trends in total suspended solids concentrations since 1987-
1993, with 12 of these trends being statistically significant. Similarly, nutrient concentrations have 
displayed declining trends in most of Auckland’s rivers, although this may be due to a declining trend 
in dairy farming rather than a response to specific management initiatives.

However, most of the indicators examined in this report suggest that environmental degrada-
tion is continuing, or that natural resources are being suppressed at environmentally low levels. For 
instance, in 1995, snapper biomass had been reduced to around 10.4% to 12.6% of the “virgin”, or 
unfished, snapper biomass. Modelling carried out in 1999 predicted that the current total allowable 
catch (TAC) will allow the substock to rebuild and exceed the MSY over a 20-year period, with a 100% 
probability. The MSY is the default fisheries target, which is produced at c. 23% of virgin snapper bio-
mass. This means that under the current management criteria, 77% of the potential snapper biomass 
will remain missing from Gulf’s ecosystem. Furthermore, empirical estimates of snapper biomass 
have not been obtained since 1995, so predictions of a rebuild cannot be verified (Section 4.1.2). The 
next stock assessment is scheduled for 2012.

Similarly, the “vulnerable biomass” of crayfish, in the CRA2 fishery area22, was estimated to be 
around 20% of 1945 levels in 2002. Crayfish biomass was expected to remain at that level through 
to 2007, but this prediction was not considered to be very reliable. Conditions which would trigger a 
reduction in the TAC for crayfish have not been met since 1991/92, but an increase in the total allow-
able catch occurred in 1997/98. The catch level has not been altered since that time (Section 4.1.3). 

22. Vulnerable biomass is the biomass of individuals above the minimum legal size after size-related differences in catch rates, protection of berried 
females and seasonal vulnerability are taken into account. The CRA2 fishery area runs from just south of Whangarei Harbour entrance to East Cape.
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The size characteristics of the fished and unfished snapper and crayfish populations differ sub-
stantially also. Fished populations tend to be comprised of few, mainly young individuals that are 
below or near the legal size limit, while protected populations tend to have large numbers of older, 
large individuals above the legal size. Importantly, while the quota management system halted the 
decline in both of these species, it now maintains them at ecologically low levels, and with highly 
modified population structures. This has direct consequences for each species, but it also affects 
the broader marine ecosystem. For instance, both of these species are high-level predators, which 
influence overall reef productivity through predation on urchins that, if left unchecked, suppress the 
growth of kelp forests through intensive grazing (Babcock et al. 1999, Shears and Babcock 2002).

MFish trawl survey data also indicates that indicators of rare and threatened fish species, fish 
diversity, and fish size and productivity displayed negative trends in the Firth of Thames between 
1965 and 2000. Statistically significant trends in the indicators of size and productivity also tended 
to be negative in central parts of the Gulf, although two positive trends were detected. Indicators 
of fish diversity, size and productivity were mostly stable in the other areas with relatively few sig-
nificant trends.

Reductions in shellfish populations have also occurred at some beaches in the Gulf, apparently 
due to harvesting, environmental stress, disease, or a combination of these conditions. MFish’s mon-
itoring of 14 sites in the Hauraki Gulf since 1998 indicates that the abundance of cockles have fluctu-
ated through time at most sites, without showing obvious increasing or decreasing trends. However, 
a 36% reduction in overall cockle abundance in Whangateau Harbour occurred between 2004 and 
2010. Overall cockle abundance also declined at Umupuia between 1998 and 2007, but subsequently 
increased due to an influx of small cockles. A low proportion of large cockles in Whangateau Harbour 
and at Umupuia is concerning, with only 1% to 2% of the population being of harvestable size. Similar 
declines have also been reported at Cheltenham Beach (Section 4.1.4).

Toxic metal and organic contaminants are causing localised effects in Auckland’s estuaries, and 
concentrations are also elevated in sediments of the southern Firth of Thames. Concentrations of 
zinc, copper and lead have been linked to adverse changes in benthic communities in Auckland, with 
contaminated sites tending to have fewer rare and large taxa. Threshold effects level (TEL) sediment 
quality guideline values are exceeded at 21 of the 50 sites that are regularly monitored by Auck-
land Council. Probable effects level (PEL) guidelines are only exceeded in tidal areas of Meola Creek 
and Motions Creek in the Waitematä Harbour. Concentrations of copper, lead, mercury and zinc 
also exceed TEL sediment quality guidelines in the south-eastern Firth of Thames, and in particular 
around Thames, where large-scale mining historically occurred (Section 4.2). Management actions 
are not expected to remediate areas affected by urban and legacy contamination, but may slow 
accumulation and prevent the degradation of areas with clean sediments. The metropolitan urban 
limit is an important regulatory tool for constraining the area affected by urban stormwater con-
taminants, but considerable pressure is being applied to have the limit extended or removed.

Historically, oceanic inputs are likely to have been the dominant source of nitrogen to the Firth of 
Thames, but riverine inputs now exceed oceanic sources. Waihou and Piako rivers dominate nutrient 
loads to the Gulf, contributing to around 90% of nutrients entering from the Waikato Region and 
exceeding river and wastewater loads from the Auckland Region. Loads of both nitrogen and phos-
phorus in the main stem of the Waihou River have increased by a around 1% per year over the past 
decade, while nitrogen loads in Piako River have increased at a rate of 3.4% per annum over the past 
decade. Piako River’s flow rate is around 27% of Waihou River’s, but it contributes the equivalent of 
approximately 68% of the Waihou River’s total nitrogen load. The long-term implications of increas-
ing nutrient loads are poorly understood (Section 4.3).

Fourteen to sixteen of the 42 beaches monitored in the Auckland Region between January 2006 
and April 2009 exceeded the “action”-level bathing beach guideline value each year, and there has 
been no change in the annual proportion of samples exceeding action levels. Exceedance of this 
guideline indicates that swimming, or other forms of contact recreation, may pose a human health 
risk. In the Waikato Region, eight of the 16 sites monitored exceeded the action threshold at least 
once in January-February 2006, with two sites (in Whangamatä and Tairua harbours) exceeding 
it two to three times. In January-February 2008, only two sites (Cooks Bay and Tairua Harbour) 
exceeded the action threshold, both on a single occasion (Section 4.4).

A number of studies have been carried out over the past decade, which have shown that sedi-
ment is a serious environmental contaminant that degrades coastal habitats and is toxic to many 
marine organisms. Sedimentation rates vary among harbours and estuaries, but modern sediment 
accumulation rates are frequently much greater than natural sedimentation rates. However, as 
mentioned earlier, there are signs that management initiatives in the Auckland Region are reducing 
suspended sediments on the coast.
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Over the past 50 years or so, sediment accumulation has also contributed to the expansion of 
mangroves in many parts of the Gulf. For instance, sediment accumulation has allowed an approxi-
mately 1 km band of mangroves to develop along the southern shore of the Firth of Thames since 
the 1940s. Maps of vegetation cover produced from the land classification database (LCDB2) indi-
cate that there was little change in the cover of mangroves between the summers of 1996/97 and 
2001/02, although the spatial resolution of these data is relatively poor (Section 4.5). 

Changes in benthic community composition consistent with increased sediment-mud content 
have been detected at sites in Puhoi, Wairewa, Orewa, Turanga and Waikopua estuaries, and in 
Mahurangi Harbour. Changes in community composition have also occurred in the Waitematä Har-
bour, but these appear to be unrelated to sediment. The proportions of mud and fine sand increased 
significantly between 2001 and 2006 at Waikato Regional Council’s monitoring sites in the Firth of 
Thames, but these changes were not matched by negative trends in species sensitive to fine sedi-
ments (Section 4.5.4). 

A total of 139 non-indigenous marine species have been recorded in the Hauraki Gulf with many 
of these well established in the Port of Auckland. Four arrivals in the past 10 years or so are notable 
for their potential to cause significant ecological and/or economic effects: the Mediterranean fan-
worm (Sabella spallanzanii); the clubbed sea squirt (Styela clava), the Asian kelp (Undaria pinnati-
fida); and the Japanese mud crab (Charybdis japonica). The introduction of other new species is a 
particular concern, because the eradication of exotic marine organisms is extremely difficult, if not 
impossible (Section 4.6).

Harmful algae and pathogens have had a major ecological and economic impact on the Hauraki 
Gulf over the past 30 years. Mass mortalities have included: the loss of around 80% of juvenile oys-
ters on oyster farms; the loss of 60 to 80% of cockles in Whangateau Harbour; the largest recorded 
fish kill in the world (pilchards); the die-off of the main canopy-forming kelp on northern reefs (Ecklo-
nia radiata); a major loss of scallops; the death of tens of thousands of fish in the central-inner Gulf; 
and the loss of around 8,500 paua at a farm in Kennedy Bay. The causes, historical incidence and 
implications of mass mortalities are poorly understood (Section 4.7).

The Ramsar site in the southern Firth of Thames is internationally significant as a shorebird sanc-
tuary. Between 1960 and 2005, seven of the 15 commonest species displayed declining trends, four 
wader species increased in number, and four species maintained relatively stable numbers. Man-
grove expansion and other habitat changes within the Firth of Thames were implicated in the 
decline of at least four species. The reasons for changes in other species are poorly understood, but 
are likely to include responses to environmental variation at the other locations in New Zealand and 
the northern hemisphere (Section 4.9.3). 

Bryde’s whales are listed as a nationally critical species, with a total New Zealand population of 
fewer than 250 mature individuals. Many of these feed, breed and raise their calves in the Hauraki 
Gulf. Bryde’s whales compete with humans for space and resources. As a result, between 1989 and 
2008 two Bryde’s whales were killed in the Hauraki Gulf from entanglement in mussel farm spat 
lines, and 11 whales are thought to have been killed by vessel strike (Section 4.9.4).

Significant areas of coastal land have been developed in the past 10 to 15 years, particularly in the 
Auckland Region where relatively large-scale development of new or “greenfield” sites has occurred 
around the margins of the Auckland urban isthmus. Smaller-scale developments have also occurred 
around the outlying towns of Warkworth, Snells Beach, Omaha, Matakana and Beachlands. Steady 
increases also occurred in the number of dwellings at east-coast settlements on Coromandel Penin-
sula between 1991 and 2006. Holiday homes were responsible for a large proportion of that devel-
opment. In 2006, 48% of dwellings in the Thames-Coromandel District were unoccupied, with most 
of these consisting of holiday homes and/or baches (but vacant properties for sale, properties com-
pleted but not yet occupied and other properties such as “abandoned” dwellings are also included in 
this figure). At the same time, there has been a corresponding decline in the number of commercial 
holiday parks on Coromandel Peninsula, with a third of them closing between 1996 and 2006.

Coastal development has led to the land surrounding 47% of the Gulf’s mainland bays and 
beaches (as named on 1:50,000 topomaps) being fully urbanised, intensively developed or moder-
ately developed, while the land surrounding 38% of bays and beaches was either undeveloped, or 
contained only scattered buildings. The Waikato Region had more undeveloped bays and beaches 
than the Auckland Region, with 36% undeveloped in Waikato cf. 5% in Auckland.

In some cases, not enough information was available to adequately characterise the impact that 
particular activities are having or to examine trends through time, but their magnitude and scale of 
effects are likely to be significant. Fishing occurs throughout the Gulf, and probably has the largest 
and most widespread impact on the Gulf’s ecosystem. However, characterising that impact is ham-
pered by a lack of fundamental information. 
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Bottom trawling and dredging have a major influence on sea-floor habitats and biodiversity (Kai-
ser et al. 2000, Thrush et al. 2001, Thrush and Dayton 2002). Bottom trawling is one of the most 
commonly used methods of catching fish in the Hauraki Gulf, accounting for around 30 to 40 % of 
the total commercial catch. The areas targeted by commercial trawlers contain a variety of different 
substrates and are also likely to contain (or to have once contained) diverse seabed communities, 
which are sensitive to trawling disturbance. However, virtually nothing is known about seabed ecol-
ogy in those areas. The total area dredged by the commercial scallop industry has ranged from 350 
to 450 km2 for most of it history, but dropped to 200 km2 in 2001, and 100 km2 in 2005, with effort 
shifting from the central Gulf and Aotea (Great Barrier Island) to Mercury Bay and Bay of Plenty. The 
areas targeted by commercial and recreational fishers contain a variety of benthic habitats, and a 
range of non-target species are commonly collected in scallop dredges, including horse mussels, 
dog cockles, starfish, sponges, kelp and turfing algae. There is very little information on the current 
or historical ecology of these areas, or the actual impacts of scallop dredging. Large, emergent spe-
cies like sponges, horse mussels and kelp are particularly important because they tend to increase 
biodiversity (Section 4.1.6). 

It is common for insufficient information being available in order to assess the status of fish 
stocks. The current status of nine of the top 15 fish species caught in the Gulf is not known, overfish-
ing of two species is thought to be occurring (tarakihi and trevally), while three species (pilchard, 
baracoutta and grey mullet) are not considered to be at risk of collapse, but not enough is known 
about the stocks to assess whether they are at or above target levels or depleted. Only two species 
(snapper and kahawai) are thought to be at or above target levels and not considered to be depleted 
or at risk of collapse. However, snapper biomass was last measured over 15 years ago (Section 4.1.1).

While many activities are causing unfavourable environmental outcomes, island restoration and 
protection initiatives have clearly produced positive conservation results. The greatest conserva-
tion achievements have occurred through community, DOC and regional council-led initiatives. The 
islands of the Gulf provide vital sanctuaries for New Zealand’s terrestrial biodiversity. Many islands 
in the outer Gulf have a high proportion of native forest cover. Ninety per cent of Aotea (Great Bar-
rier Island) and 86% of Kawau Island have a cover of indigenous forest, broadleaved indigenous 
hardwoods, or manuka and kanuka. Most of the islands around Coromandel Peninsula are also cov-
ered in native vegetation, the notable exceptions being Great Mercury and Slipper islands. Motuora 
and Tiritiri Matangi islands have been revegetated, with volunteers planting around 206,000 trees 
on Motuora and 280,000 trees on Tiritiri Matangi. Motutapu and Motuihe islands have been par-
tially revegetated, but still consist of mostly pasture, and the Rotoroa Island Trust is replanting on  
Rotoroa Island. 

Twenty-seven of the 62 (43%) islands in the Gulf that are larger than 10 ha are currently free 
of mammalian herbivorous and predatory pests. Pest eradication has also been occurring on Ran-
gitoto and Motutapu islands, but their pest-free status is yet to be confirmed. The elimination of 
mammalian pests has allowed one nationally critical (takahe) and four nationally endangered (hihi, 
kokako, North Island weka and brown teal) bird species to be translocated to, or among, islands in the 
Gulf. In addition, one nationally critical (Mercury Island tusked weta) and two nationally endangered 
(Mahoenui giant weta and wetapunga) insects, and one nationally vulnerable (Whitaker's skink) rep-
tile have been translocated. A number of other less-threatened species have also been translocated 
among islands.

The Gulf’s marine reserves have also allowed the recovery of heavily fished species such as snap-
per and crayfish, which has led to corresponding changes in reef ecology and productivity (Babcock 
et al. 1999, Shears and Babcock 2002).
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New Zealanders have an intimate connection with the coast which, for many, is strongly linked to 
their sense of place and belonging. On any given day thousands of people look out upon the Hauraki 
Gulf and appreciate its natural beauty. On calm, summer days its waters shimmer and sparkle, entic-
ing families to the beach to swim and play. On wild days the Gulf demonstrates its raw power, which 
can inspire fear, awe or inspiration. People visit and inhabit its picturesque islands, beaches and bays. 
They spend their spare time on the water and around it shores. Many make their living off the sea. 

The natural beauty of the Gulf is one of its greatest assets, but it has many others. Most of these 
are hidden from view or are infrequently seen, but all have been affected by humans. Human utilisa-
tion of the Gulf has been occurring for only a relatively short time, but our impact has been immense. 
Many of the Gulf’s natural assets have been seriously impacted. Some are just clinging on to exist-
ence. Too many have been lost. 

This report highlights the incredible transformation the Gulf has undergone over two human 
lifespans. That transformation is continuing in the sea and around the coast, with many environ-
mental indicators either showing negative trends or remaining at levels which are indicative of poor 
environmental condition. Key exceptions are the critical island restoration work that is being carried 
out to help the survival of endangered birds, reptiles and insects, and marine reserves, which have 
allowed the recovery of populations and ecosystem functions. However, it is inevitable that further 
loss of the Gulf’s natural assets will occur unless bold, sustained and innovative steps are taken to 
reduce the utilisation of its resources and halt progressive environmental degradation. The regula-
tory tools appear to be available to do this, but to date they have either not been implemented or 
the manner of implementation has not been effective. The challenge facing today’s managers and 
kaitiaki is to find solutions to the progressive decline in the Gulf’s resources and ecosystem to protect 
opportunities for future generations.

“The focus must be on finding solutions for regenerating and sustaining the mauri (life-energy 
force) and integrity of Tikapa Moana’s domain for Tikapa Moana’s own sake. Future generations 
benefit when the mauri and integrity of Tikapa Moana is sustained.” Betty Williams, tāngata whenua 
representative
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