

Fishery Management in NZ

Statutory Framework and Theory behind Maximum Sustainable Resource Use

New Zealanders maximising benefits from the use of fisheries within environmental limits

New Zealand Government

Statutory Framework

 Our fishery management framework is provided by the Fisheries Act 1996 and Regulations

A 'use' statute – must provide for the use of resources Use must be sustainable

- Ensure stock sustainability
- Address adverse effects of fishing on environment

Sustainability Keystones

- Main tool is limiting catch
- Management is at 'stock' level fish population & area
- 'Baseline' for ensuring sustainability is to maintain biomass at or above the level that can produce the MSY
- Consistent with government objectives to get the greatest benefits from primary resources (sustainably)

MSY concept. (1)

- based on biological principles and the responses of populations to harvesting
- Without fishing
 - Unfished populations are at equilibrium or carrying capacity of environment/ecosystem
 - Births and deaths are in dynamic balance and the population is at equilibrium level (births add and deaths remove numbers, growth of individuals adds...)
 - Unfished population size will vary with environmental factors

MSY concept continued..(2)

With fishing -

- Biomass removed reduces competition for space, food
- Fewer older, slow-growing fish & more young, faster-growing fish
- Although the population growth rate (as a %) is highest at low population size, the highest absolute production is at some intermediate population size
- Production by fish in a depleted population tends to grow the population back towards the unfished level or carrying capacity
- Creates what is called 'surplus production' that is available as sustainable yield

MSY concept continued..(3)

- Fishing can be sustainable at different levels of catch and stock biomass
- MSY is the greatest catch that can be taken on average over time
- High biomass can only be maintained by relatively low catch, but supports higher CPUE and bigger fish
- Very low biomass tends to be more risky (stocks can collapse if reproduction affected) and supports only low catch and low CPUE
- The risk of affecting reproductive processes increases as biomass decreases below B_{MSY}

Determining target biomass

- Starting point or default target is B_{MSY} which maximises sustainable production
- The Act allows for higher target biomass, taking into account -
 - Ecosystem factors
 - Economic factors
 - Social, cultural factors
- Achieving and maintaining higher biomass requires reduced catch, so consider 'costs and benefits' –
 - Available catch level overall less catch to be shared
 - Social and economic jobs in commercial sector, market supply, quota rights
 - Ecosystem benefits less risk, better buffering against unexpected change
- Stakeholders' input is important
- Minister makes final decision on target

Conclusions

- Default target = B_{MSY}
- Other targets are options
- Target for each stock should consider these factors:
 Ecosystem
 - Social and cultural
 - Economic
- Minister chooses the target